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Abstract 

The 2020 novel coronavirus pandemic has impacted our lives in many ways. This article examines the rapid adoption 

and use of traditional and "state-of-the-art" information technologies intended to help cope with the pandemic. People 

and organizations have adopted and used IT tools for collaboration, communication, surveillance and monitoring, 

remote working, and cloud-based applications for one major reason – necessity. There is no viable alternative to 

maintain our civilized society. These and other information technologies have helped people continue to work, to 

socialize, to communicate, to entertain, to visit doctor’s office, to shop, and live. Experience with these technology 

adaptations has demonstrated that we need more and better IT solutions, more technology literacy, better public health 

surveillance, and better preventative measures to minimize harms from health crises to find a new normal. In the 

future, many people will likely choose to work and learn remotely, and organizations and governments must upgrade 

their digital capabilities and the skills of employees. IT can increase the robustness and adaptability of our economic 

and social systems as well as our well-being. 

 Keywords: Pandemic, rapid change, Information Technology adoption 
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1. Introduction

   One year ago, Hadidi and Power (2020) asserted that the technology adoption rate is becoming much faster, and that technology 

adoption has "changed from an approximately normal curve to a skewed curve with more people adopting new technology quickly.” 

On March 11, 2020, the World Health Organization announced that COVID-19 is a pandemic. The health crisis has encouraged and 

promoted faster adoption of innovative technologies. Our personal, organizational, and societal experiences during 2020 reinforce our 

conclusions about technology adoption. A major external disruptive event can significantly alter technology adoption. A global 

pandemic is a serious, unexpected event. The magnitude of the current disruption is hard to comprehend. In 2020, there were globally 

more than 85.5M cases of the Coronavirus disease, 60.4M people recovered, and 1.85M people died 

(https://www.worldometers.info/coronavirus/ accessed 1/3/2021). These are conservative numbers. Some would call the Coronavirus 

Pandemic a Black Swan event (Taleb, 2007); others would call it an unanticipated disaster. This article reviews major changes that 

have occurred from the rapid adoption and increased use of Information Technology (IT). 

   In the past 25 years, we have experienced smaller-scale health crises like Ebola virus disease (EVD) and the human immunodeficiency 

virus (HIV/AIDS).  More than one hundred years ago, the often-mentioned Spanish flu or the 1918 flu pandemic caused by the H1N1 

influenza A virus was much deadlier and more widespread. The 1918 flu pandemic lasted from February 1918 to April 1920 and 

infected 500 million people – about a third of the world's population in four successive waves.  Estimates are that 50 million people 

died during the 1918 pandemic in 26 months. The Black Death plague of 1347 to 1351 was the deadliest pandemic recorded in human 

history. The Black Death pandemic resulted in the deaths of 75–200 million people in Eurasia and North Africa, cf., 

en.wikipedia.org/wiki/Black Death.  

   Society survived the Black Death and the 1918 flu without IT, but with a tremendous loss of lives. The current pandemic has been far 

less virulent than either of those global health crises, but our response has not been rapid and robust. Our current systems and processes 

that incorporate IT are more robust than 100 years ago and our medical and genetics knowledge are much more sophisticated, but we 

can and are making improvements.  Implementation of Information Technology is reducing some of the negative consequences and 

reducing our vulnerability from a rapidly spreading, deadly virus.   

   The novel coronavirus pandemic has impacted our lives in many ways. This article narrowly examines only the first and second-order 

changes from the rapid adoption and use of traditional and "state-of-the-art" information technologies. 

2. Impacts on Individuals

   The pandemic has affected young and old alike. In particular, when it comes to the social, and physical well-being and education of 

children, this pandemic has been devastating.  Technology has helped somewhat to remedy some of the difficulties. However, the 

availability and utilization of technology by children is neither uniform nor consistent across various geographic areas and the economic 

status of families. High speed Internet simply is not available to all families and in all geographic areas around the country. For children 

with disabilities, this situation is even much worse. During this time of social distancing and isolation, we need to take steps and be 

more prepared for future pandemics and make sure the needed technologies are more widely available and accessible to all individuals 

and families and, in particular, families with fewer resources and younger children.  

   More students will continue learning through hybrid IT-based instruction, perhaps alternating between classes in person and virtually 

on Zoom or other platforms. Teams are using more collaboration and scheduling tools. Distributed teams are more widely accepted.  

Teleworking has increased significantly (Messenger, Vadkerti, and Uhereczky, 2020). The increase in telework has resulted in 

expanded data collection from monitoring remote workers and remote students. Many people have had to rapidly acquire new skills to 

be able to learn and work at home. Working and learning from home will likely continue as a popular alternative once the pandemic 

subsides. It will be interesting to study and see the long-term implications of using new technologies in real estate, transportation, 

retailing, environmental sustainability, and other domains of commerce.  

   More people in businesses, agencies, and other organizations are having synchronous decision-making meetings. Zoom, Microsoft 

Teams, Google Meet, Go To Meeting, and other conferencing tools have increased in popularity and use. Videotelephony is widely 

accepted and understood. Working from home or remote locations using technology is more widely accepted. Evidence shows that use 

of conferencing tools has significantly increased in the past year. For example, Zoom launched in 2011 and had 30 million users in 

2014 according to: https://usefyi.com/remote-work-statistics/#863. Zoom surpassed 300 million daily Zoom meeting 

participants in 2020, a 50% increase from the prior month (200 million). For comparison, in December 2019, Zoom reported 

10 million meeting participants (https://usefyi.com/remote-work-statistics/#851).The Zoom Cloud Meetings app on the App 
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Store ranked #3 worldwide among the non-gaming app publishers (Statista). Table 1 summarizes some usage statistics for 

Zoom.  

Number of People Using Zoom  300 Million Daily Meeting Participants 

Number of Users 200 Million 

Number of Corporate Customers 265,400 

Number of Schools Using Zoom 100,000 

Number of Zoom Customers with more than 10 Employees 81,900 

Number of Zoom Installs in June 2020 71.2 Million 

Number of times Zoom was downloaded from the App Store in Q2 2020 94 Million 

Table 1. Zoom facts (as of July 2020), source https://expandedramblings.com/index.php/zoom-statistics-facts 

   Data shows that there are more apps for ordering food products and for other types of shopping. The delivery economy is growing, 

especially in large cities. Online to offline food delivery has facilitated consumer access to prepared meals and enabled food providers 

to keep operating (Li, Mirosa, and Bremer, 2020). 

    Location aware apps are assisting with contact tracing. Healthcare professionals and patients have embraced telemedicine and app-

based monitoring of wellness information. The findings of a recent study suggest that “telemedicine and virtual software are capable of 

decreasing emergency room visits, safeguarding healthcare resources, and lessening the spread of COVID-19 by remotely treating 

patients during and after the COVID-19 pandemic” (Bokolo, 2020, p. 1). Hakim, Kellish, Atabek, et al (2020) suggest that telemedicine 

and virtual software platforms may be helpful to manage the pandemic. In this crisis, information technology has opened a new frontier 

in mental health support and data collection. There are thousands of mental health apps available in the iTunes and Android app stores. 

Torous, Myrick, Rauseo-Ricupero, et al (2020) suggest that increasing investments in digital mental health today will improve access 

to mental health care in the future. 

   Rapid adoption of thermal imaging and video surveillance systems monitor temperatures, enforce mask restrictions, and detect social 

distancing violations, cf., Lopeztello and Wulffson (2020).  Sensors for temperature checks are more widely used in airports and office 

buildings. There is greater interest in Internet of Things (IoT) enabled sensors and devices that are used to increase the efficiency of the 

appliances in a smart building and make it more efficient, sustainable, and safer. IT is increasingly used for automatically controlling 

heating, ventilation, air conditioning, lighting, security and other systems of a building. 

   Barcoding allows vaccine information to be documented in an Electronic Health Record (EHR) instantly and accurately. 

Immunization Information Systems (IISs), otherwise known as immunization registries, are confidential, population-based, 

computerized databases that record all immunization doses administered by participating providers to persons residing within a given 

geopolitical area. They offer an opportunity for confidential, secure, centralized, and immediate access to immunization records for 

authorized providers. 

   More seniors over age 65 are adopting information technologies. Etkin (2020) asserts "In 2020, many older adults’ own devices with 

Internet capabilities and are able to use them to video chat with family members and friends, order groceries, consume content online 

and even exercise." Families are having FaceTime and Zoom gatherings. Virtual events have provided some new social activities. 

3. Impacts on Organizations

   Health organizations are increasing the use of IT. For example, bioinformatics is an important, interdisciplinary field that develops 

methods and software tools for understanding biological data, especially large and complex data sets. IT is used for gene sequencing 

and genetic engineering of vaccines. McCullers and Dunn (2008) noted “The introduction of genetic engineering has fueled rapid 

advances in vaccine technology and is now leading to the entry of new products in the marketplace.”  Increased adoption of health 

information technologies has been a major consequence of the health crisis. Health IT provides many opportunities for improving and 

transforming healthcare. Adoption of health IT is reducing human errors, improving clinical outcomes, facilitating care coordination, 

improving practice efficiencies, and collecting and tracking data over time, cf., https://www.ncbi.nlm.nih.gov/pmc/. 

   Robotic process automation is changing workflows, including document generation and payment processing. Industrial robots and 

automated manufacturing are changing production and distribution processes. 
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   There is greater use and acceptance of Artificial Intelligence. According to McKendrick (2020), "KPMG is applying AI approaches 

to rapidly analyze contractual obligations and termination clauses, as industries face supply chain delays, cancelled events and other 

roadblocks. ... KPMG also reports developing AI-based tools to supplementing employee and customer call centers to analyze and 

triage issues and questions." 

   More government services are provided online rather than in person. For example, online portals, increased social media use, AI and 

robotics, cf., Charlton, 2020. Governments have employed digital platforms, and big data analytics. 

   Organizations are adopting many information technologies including online health care; blockchain-based epidemic monitoring 

platforms; robots that deliver food and medications and that screen people’s temperatures; online education platforms and home-based 

working solutions; and robotics and 3D-printing technologies to manage social distancing in manufacturing plants.  

   The impacts of COVID-19 on organizations are deep, broad, and potentially permanent. The impact is not limited to the increase in 

the use of technology and how employees continue doing their jobs. The pandemic is impacting consumer behavior, marketing, human 

resource management, competition, supply chains, and possibly even corporate social responsibility and sustainability.   

   As the pandemic forced organizations’ employees to work from home, their consuming habits changed. No longer could people easily 

go to restaurants at their work locations or close by. Their shopping habits changed. Online shopping significantly increased and this 

could become a permanent habit for many consumers. Shops have to modify their marketing strategies to fit the consumers’ behavior 

during and possibly even after the pandemic. Organizations need to be aware of implications for their human resources activities 

including leave policies, remote work policies, technology training, and mental health issues. The pandemic has significantly increased 

competition between online and brick and mortar entities. Due to altered consumer habits, the practice of online shopping could 

potentially remain very strong even after the pandemic. We have all experienced supply chain issues for many essential products. Let 

us hope that companies learned a lesson to incorporate newer technologies in their supply chain operations and move towards smart 

supply chain platforms. Let us also hope that at least some good will come out of this devastating pandemic in areas such as corporate 

social responsibility and sustainability. He and Harris (2020) clearly articulate the potential movement of organizations toward more 

robust corporate social responsibility and sustainability.   

4. Conclusions

   Clark (2020) notes "When we look back on the current health crisis, there’s no doubt that we’ll learn that it resulted in a number of 

innovations: new drugs and medical devices, improved healthcare processes, manufacturing and supply chain breakthroughs, novel 

collaboration techniques." He argues "crisis demands movement and change – the pace of ideation, decision making, and 

implementation all increase dramatically." The increased use of information technology is likely a permanent change. Our new normal 

will be a mix of both face-to-face and information technology-mediated activities. Better supply-chains, more automation, and Artificial 

Intelligence will create a more flexible economy. 

   Information technologies have helped people and organizations continue to function. IT helps us to work, to socialize, shop, and live. 

Experience with these technology adaptations and supports has demonstrated that to find a new normal we need more and better IT 

solutions, more technology literacy, better public health surveillance, and better preventative measures to minimize harms from any 

future health crises. In the future, more people will likely work and learn remotely, and organizations and governments must upgrade 

their digital capabilities and the skills of employees. 

   As a species, we have an extreme dependence upon human contact which is both an economic and social strength and weakness. We 

have observed how an infectious disease can spread by human contact. The deadlier the disease the more we need to isolate, quarantine, 

and use Information Technology intermediation. At some point the disease will be "controlled", but we cannot return to the processes 

and behaviors of the past. Businesses, schools, and colleges are reopening, but life will never return to the old normal. Society will 

fashion a new normal that makes greater use of IT.  

   Unfortunately, the impact of the COVID-19 pandemic will last a very long time. Let us hope that during these terrible times of death, 

sickness, and lost livelihoods, we have all learned a significant lesson. Information Technology is important and relevant for the well 

being of all of us. 
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5. Overview of the Contents of this Issue

  This issue of the journal includes three traditional research articles and a tutorial. 

   Joey George and Alastair Robb, in a very timely article, look at deception detection in digital communication among people. 

In particular, they look at individuals in the US and Australia to determine if people in one culture can detect deception of 

people in the other. They look at full audiovisual, video only, audio, and text communication. Their study finds that both 

Americans and Australians can detect deception at approximately the same rate across both cultures. Further, their study finds 

that individuals were able to more accurately detect deception for full audiovisual types of communication.     

   John Muraski, Jacob Iverson, and Kimberly Iverson, look at the challenges organizations are facing in finding skilled IT 

talent. Specifically, they look at the Northwest Wisconsin region and the creation of a “New Digital Alliance.” This innovative 

initiative is funded by local companies and universities. The main purpose of this collaborative alliance is to attract, develop, 

and retain IT talent for the Northern Wisconsin region. This collaborative network could potentially serve as a model for other 

regions in the country.   

  Loknath Sai Ambati and Omar El-Gayar investigate the performance of machine learning (ML) techniques used in human 

activity recognition (HAR). They specifically look at the more commonly used approaches of Naïve Bayes, Support Vector 

Machine, K-Nearest Neighbor, Logistic Regression, Stochastic Gradient Descent, Decision Tree, Decision Tree with entropy, 

Random Forest, Gradient Boosting Decision Tree, and NGBoost procedures. This study evaluates the ML techniques using 

accuracy, precision, recall, F1 score, support, and run time performance measures on several HAR datasets. The authors 

highlight the importance of adopting an appropriate ML technique based on the specific HAR requirements and the 

characteristics of the associated HAR datasets.  

      Vlad Krotov and Matthew Tennyson in their tutorial demonstrate how to use “rvest” and “xm12” packages for Web 

Scraping. Specifically, they use simple examples to demonstrate how these R-based packages can be used to retrieve data from 

sites such as Bayt.com which is a prominent employment Web site in the Middle East.  

      We appreciate and wish to acknowledge the contributions of reviewers for this issue of the journal, including Gaurav Bansal 

(University of Wisconsin, Green Bay), David Biros (Oklahoma State University), Queen Booker, (Metropolitan State University), Mari 

Buche (Michigan Technological University), Sean Eom (Southeast Missouri State University), Joey George (Iowa State 

University), Yi “Maggie” Guo (University of Michigan, Dearborn), Bryan Hosack (Penske Logistics), Jakob Iverson (University of 

Wisconsin, Oshkosh), Anoop Mishra (University of Nebraska, Omaha), Alanah Mitchell (Drake University), Shana Ponelis 

(University of Wisconsin, Milwaukee), Kevin Scheibe (Iowa State University), and Neetu Singh (University of Illinois, 

Springfield). 
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Abstract 

The reach of global communication is expanding through the growing availability of smartphones.  Smartphones are 

particularly popular for texting and voice/video calls, and their affordability means that more and more people around the 

world can now communicate with each other.  Yet with the spread of global communication also comes increased exposure 

to deceptive communication.  Can people in one culture accurately detect deception across cultures?  And does the 

communication media they use play a role in their detection accuracy?  We attempt to answer these two research questions 

in a study of Australian and US judges who were asked to detect deception in Australians and Americans, across four 

different media: full audiovisual, video only, audio only, and text.  We found that both Australians and Americans could 

accurately detect deception at about the same rate across both cultures, and they were better at detection when exposed to 

full audiovisual stimuli compared to text. 

  Keywords: Computer mediated communication; deceptive communication; national culture 

DOI: 10.17705/3jmwa.000063 
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1. Introduction

  The Pew Research Center reports 81% of Americans owned smartphones in 2018 (Taylor & Silver, 2019), and the three 

most popular uses for them were text messaging, internet use, and voice/video calls (Smith. 2015).  More than 5 billion 

people worldwide had mobile devices in 2018, and over half of these were smartphones. Further, while people in 

developed countries surveyed were more likely to have smartphones (76%), almost half of those in developing countries 

had them (45%) (Taylor & Silver, 2019). While internet use is ubiquitous in developed countries, its use is growing 

rapidly in emerging economies (ITUNews, 2018). In short, the world is becoming increasingly connected through 

smartphones, and aside from internet access, the primary purpose of smartphones is communication.  Accordingly, 

people are able to communicate with each other all over the world, in real time and at relatively low cost. 

   Everyday normal communication includes a deceptive component (DePaulo, Kashy, Kirkendol, Wyer & Epstein, 

1996), whether that communication takes place in face-to-face encounters or over the phone. While most deceptive 

communication research has been conducted in North America, there is no reason to believe international cross-cultural 

communication will be any less deceptive.  While it is widely recognized that on average people are able to successfully 

detect deception only about 54% of the time (Bond & DePaulo, 2006), not as much is known about how well people are 

able to detect deception in cultural groups other than their own.  Only five published studies have explicitly investigated 

deception detection across cultures (Al-Simadi, 2000; Bond & Atoum, 2000; Bond, Omar, Mahmoud, & Bonser, 1990; 

Castillo, Tyson, & Mallard, 2014; George, Gupta, Giordano, Mills, Tennant & Lewis, 2018).  Four of the five studies 

found that people could accurately detect deception in other cultural groups. These studies included seven national 

cultures, as defined by Hofstede (1980): Americans (USA), Australians, Colombians, Indians, Jordanians, Malaysians, 

and Spaniards.   

  Bond and colleagues (1990) argued that there were two ways to look at the question of culture and deception detection: 

a “universal cue hypothesis” and a “specific-discrimination hypothesis.”  The former posits that, given the universal 

nature of deception, people should be able to detect it just as easily in other cultures as in their own.  The latter argues 

that deception and its detection are both learned and hence depend heavily on the cultural context and language in which 

that learning takes place. Hence people should have a difficult time accurately detecting deception across cultures.  The 

evidence to date supports the universal cue hypothesis, but the evidence is limited.  Additional cultures and the deception 

detection abilities of their members need to be studied for a more complete understanding of the relationship between 

culture and deception detection.  While it is impractical, and likely implausible, to compare all national cultures to each 

other, it is possible to compare a few. To date, all studies of deception detection across cultures have featured members 

of cultures that differ a great deal from each other. This study focuses on two national cultures that are very similar, 

people living in the US and people living in Australia. By establishing baselines, based on extreme differences and on 

extreme similarities, we will be able to make inferences about the how detecting deception across a host of cultures might 

compare. 

  As the statistics on smartphone and internet use show, this increasing interconnectedness of people of different cultures 

is a direct result of increased use of communication and information technologies.  We know a great deal about deception 

and its detection in real-time face-to-face environments, we know less about the relationship between detection and the 

computer-mediated communication mode (e.g., skype, SMS texting, voice-over-IP, email) over which the deceptive 

communication takes place.  While several studies have found media differences between face-to-face and computer-

mediated communication (e.g., Dunbar, Jensen, Burgoon, Kelley, Harrison, Adame, & Bernard, 2015; Van Swol, Braun 

& Kolb, 2015), the evidence of a direct relationship between media and detection accuracy in computer-mediated modes 

is limited (Burgoon, Stoner, Bonito, & Dunbar, 2003; Burgoon, Blair, & Strom, 2008; Dunbar, Jensen, Tower, & 

Burgoon, 2014; George, Marett & Tilley, 2008; George, Tilley & Giordano, 2014; Hancock, Woodworth, & Goorha, 

2010; McHaney, Gupta & George, 2018; Rockmann & Northcraft, 2008; Zhou & Zhang, 2007).  However, given the 

differences between face-to-face communication and email or smartphone-based videoconferencing, it follows that the 

accuracy of deception detection would depend on the medium over which it is conveyed. 

  To further investigate the issues of culture, media and deception detection, we created a stimulus set that mixed honesty 

and dishonesty, as well as media, using individuals from Australia.  We had already created such a stimulus set for US 

English.  Altogether, we have created and tested five such stimulus sets as part of a multi-year program of study.  (The 

other three are Indian English, Spanish, and Hindi.) We then exposed Australian and American judges to the Australian  

and US English stimulus sets.  This comparison of American and Australian stimulus sets is novel, as this is the first 
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cross-cultural study dealing with deception detection that we are aware of that compares two similar national cultures. 

Our research questions are: 1) Can individuals of one culture accurately detect deception in individuals from a similar 

but different culture? and 2) Is there a relationship between deception detection and media?  The rest of the paper is 

organized as follows: First we review the literature on deception, media and culture.  We then present our research 

methods, our findings, and a discussion of the implications of our results. 

2. Literature Review

  We define deception as “a message knowingly transmitted by a sender to foster a false belief or conclusion by the 

receiver” (Buller & Burgoon, 1996, p. 205).  In general, people are not very good at detecting deception, with an accuracy 

rate of around 54%, barely better than chance (Bond & DePaulo, 2006).  While deceptive communication has been 

studied for decades, much of what we know has been learned in a North American context, based on dyadic real time 

communication.  Until recently, neither communication media nor national culture were key aspects of the study of 

deception and its detection.  In the next sections, we review the relevant literature on deception and culture and on 

deception and media.  But first we present a brief primer on culture and its dimensions. 

2.1 Culture 

  National culture is defined as “the collective programming of the mind which distinguishes the members of one human 

group from another” (Hofstede, 1980).  Hofstede (1980) was one of the first to study national culture and to determine 

its specific dimensions.  There are currently six dimensions (Hofstede, 2016): 1) power distance, 2) individualism vs 

collectivism, 3) masculinity vs femininity, 4) uncertainty avoidance, 5) long-term vs. short-term orientation, and 6) 

indulgence vs restraint.  Power distance is a measure of how tolerant people are of the unequal distribution of power in 

a society.  Individualism vs collectivism reflects the extent to which a society is tightly- or loosely-knit. Masculinity vs 

femininity has less to do with gender than it does with whether a society is based on competition and assertiveness or 

cooperation and nurturing.  Uncertainty avoidance, as the name suggests, is the extent to which members of a society 

can tolerate uncertainty.  Long- vs. short-term orientation is a measure of the extent to which societies prepare for the 

future.  Finally, indulgence, the newest dimension, reflects the allowance of free gratification of human drives, focusing 

on enjoying life and having fun, while restraint leads to the suppression of such gratification.  Hofstede’s original studies 

(Hofstede, 1980) were conducted between 1967 and 1973 and resulted in the definition of the original four dimensions. 

2.2 Differences in Deception across Culture 

  Several studies have reported differences in how deception is viewed across cultures.  Although most of these studies 

have focused on differences between Western and Eastern cultures (especially East Asian cultures), cultures from all 

over the world have been investigated.  Table 1 provides a sampling of this work.   

Table 1. A sampling of study results related to differences in deception across cultures. 

Study Countries Select Findings 

Triandis et al 2001 Multiple national 

cultures 

In business negotiations, members of collectivist cultures are more 

dishonest than members of individualistic cultures 

Seiter & Bruschke 

2007  

China & US Americans experienced more guilt over lying than Chinese 

participants.  

Fu et al. 2011 China & US Chinese participants perceived lying more favorably than Americans 

for modest behavior 

Bessarabova 2014 Russia & US Russians lied more often than Americans to help the 

underperforming in-group members. 

Hamilton & 

Kirwan 2013 

Ireland & US Online dating profiles of Irish males were found more deceptive than 

American profiles. 

Banai et al. 2014 Israel & 

Kyrgyzstan 

Kyrgyzstanis more likely to endorse ethically questionable 

negotiation tactics (i.e., pretending, deceiving, & lying) than Israelis. 
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  The research shows that what some see as deceptive, and hence inappropriate, others might see as a perfectly acceptable 

practice. These findings imply that accurate detection of deception across cultures might be difficult.  Accurate detection 

becomes more complicated if there is a lack of agreement on what constitutes deception in the first place.   

2.3 The Universal Cue Hypothesis 

  Only five published studies have explicitly investigated the relationship between deception detection and culture (Al-

Simadi, 2000; Bond & Atoum, 2000; Bond, et al., 1990; Castillo, et al., 2014; George et al, 2018).  The first study (Bond, 

et al., 1990) found that people were not able to accurately detect detection in other cultural groups.  The authors argued 

their findings implied support for the “specific-discrimination hypothesis,” whereby deception and its detection were 

dependent on cultural and language-based behaviors that people learned as they learned to communicate.  Such a 

conclusion would have been expected in light of differing cultural definitions of deception, as illustrated by Table 1. The 

other studies all found that people could indeed accurately detect deception across other cultures, supporting the universal 

cue hypothesis, that everyone regardless of culture engages in similar behaviors during deception.  These behaviors 

would be universally regarded as indicative of deception.  Further, three studies (Al-Simadi, 2000; Castillo, et al., 2014; 

George et al, 2018) found that in some cases, people were even better at detecting deception in other cultural groups than 

in their own. The cultural comparisons conducted in these four studies are shown in Table 2.  

Table 2. Cultural comparisons across four studies that found evidence of the ability to successfully detect deception 

across cultures. 

USA Australia Spain India Jordan Malaysia Colombia 

USA ----- x [1] 

Australia x [current] ----- x [3] 

Spain x [4] ----- 

India x [4] ----- x [1] 

Jordan x [1] ----- 

Malaysia x [2] ----- 

Colombia ----- 

Studies: [1] Bond & Atoum, 2000; 2] Al-Simadi, 2000; [3] Castillo et al 2014; [4] George et al 2018 

  Across the available empirical evidence from these studies, we see three patterns (Table 3).  Some groups of judges 

have been better at detection deception in their own group than in others; some have been better with members of other 

cultures; and for one group, all three sets of judges were equally accurate.  In general, based on the findings from these 

studies, the universal cue hypothesis seems to hold – people can accurately detect deception in their own group, and in 

other cultures, apparently using similar indicators of deception.  Given these findings, we would expect that the answer 

to our first research question -- Can individuals of one culture accurately detect deception in individuals from another 

culture? -- would be affirmative.  That leads to our first hypothesis: 

Hypothesis 1: Members of a national culture will be able to accurately detect deception among members of their own 

culture and in members of other cultures. 

Table 3. Patterns of comparative deception detection success across cultures in four studies. 

Better in own group 

(compared to other groups) 

Better with other group (compared to their 

own group) 

No differences 

Americans (judging Americans & 

Jordanians) (Bond & Atoum, 2000) 

Jordanians (judging Jordanians & 

Malaysians) (Al-Simadi, 2000) 

Indians, Americans & 

Jordanians (judging Indians) 

(Bond & Atoum, 2000) 

Jordanians (judging Americans & 

Jordanians) (Bond & Atoum, 2000) 

Malaysians (judging Jordanians & 

Malaysians) (Al-Simadi, 2000) 

Spaniards (judging Spaniards & 

Americans) (George et al, 2018) 

Australians (judging Australians & 

Colombians) (Castillo et al, 2014) 

Indians (judging Indians & 

Americans) (George et al, 2018) 

Americans (judging Americans, Spaniards 

& Indians) (George et al, 2018) 
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  But the findings reveal some interesting comparative outcomes.  In the case of members of two particular cultures, 

Americans and Jordanians, individuals sometimes did better with their own culture, and sometimes they did better with 

other cultures.  Why is that the case?  It could be due to different stimulus materials across studies, or it could be due to 

differences in the cultures that were compared.  For example, American judges did better with their own group when 

compared to Jordanians (Bond & Atoum, 2000), and they did better with the other groups when compared to Spaniards 

and Indians (George et al, 2018).  Based on Hofstede’s measures, the seven national cultures that have been studied in 

this context differ dramatically from each other on some cultural dimensions but not on others (Table 4).  For example, 

Colombia and Australia differ widely on power distance, individualism/collectivism, and uncertainty avoidance, but their 

scores are very similar for femininity/masculinity (both are masculine) and short/long-term orientation (both tend towards 

short-term).  Jordanian culture tolerates a more unequal distribution of power in society than does Spanish culture, and 

Jordanians are more collectivist, more tolerant of uncertainty, and more short-term oriented than Spaniards.   

Table 4. Cultural Dimension Scores from geert-hofstede.com/dimensions.html (sorted by scores on 

Individualism/Collectivism, from most individualist to most collectivist). 

Cultural Dimension USA Australia Spain India Jordan Malaysia Colombia 

Power Distance (PD) 40 36 57 77 70 100 67 

Individualism/ 

Collectivism (IC) 

91 90 51 48 30 26 13 

Masculinity/ 

Femininity (MF) 

62 61 42 56 45 50 64 

Uncertainty  

Avoidance (UA) 

46 51 86 40 65 36 80 

Long Term  

Orientation (LT) 

26 21 48 51 16 41 13 

  To chart the differences across these cultures, we devised a simple (and somewhat crude) measure, which we call the 

Hofstede score difference index.  In comparing two cultures, we subtract the Hofstede scores for one culture from the 

other for each dimension, and we sum the absolute values of those differences.  The results, for past cultural comparisons, 

plus the difference in Australian and US cultures, are shown in Table 5 and Figure 1.  

Table 5. Hofstede score difference index for cultural comparisons (possible range: 5 – 500). 

USA-AUS Malaysia-Jordan India-Jordan USA-Jordan USA-Spain USA-India AUS-Colombia 

16 93 96 117 137 139 148 

Figure 1. Hofstede score difference index for cultural comparisons 
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  Out of this set of national cultures, the two cultures that are most different are Australians and Columbians.  However, 

no two are more similar than Australia and the U.S. Both are low power distance, highly individualistic, masculine, short-

term orientation countries, and both have mid-level scores for uncertainty avoidance.  Whether the specific-

discrimination or universal cue hypothesis holds, due to the close similarity of their cultures, Australians and Americans 

should be equally able of accurately detecting deception both within and across their cultures.  Thus, we hypothesize: 

Hypothesis 2: Australian and US judges will be able to detect deception equally well both within and across their cultures. 

2.4 Deception & Media 

  The past decade has seen a dramatic increase in the number of studies investigating the relationship between media and 

deception detection.  Most of these studies have investigated one medium at a time, with a particular focus on the 

development of an automated tool for detecting deception within a specific medium (see Zhou, Burgoon, Zhang, & 

Nunamaker, 2004).  Another set of studies has investigated the direct relationship between media and detection by 

comparing multiple media in a single study.  The findings from these studies have been mixed.  While some have found 

direct effects (Burgoon, et al., 2003; Burgoon, et al., 2008; Dunbar, et al., 2014; Zhou & Zhang, 2007), others have found 

evidence of a mediated relationship (George et al, 2008; George et al, 2014; Hancock, et al., 2010; Rockmann & 

Northcraft, 2008).   

  There has also been evidence of media differences in the few studies that have investigated media and culture.  In fact, 

the key difference between Bond’s 1990 and 2000 studies was that the experimental stimuli had no sound in the former 

study, while those in the latter study did have sound.  The availability of sound helps explain the differences in findings 

between the studies -- Bond concluded that people could not detect deception across cultures after the 1990 study, but 

he concluded the opposite after the 2000 study.  George and colleagues (2018) also found evidence of media effects.  

Looking at the relationship between media and deception detection accuracy, they found that veracity judges were less 

successful at deception detection when judging video-only communication, compared to full audiovisual, audio-only, 

and text communication. Given this pattern of findings, even with the few studies that have been conducted, we would 

expect to find differences in detection accuracy, depending on media.  But which media should be best for detecting 

deception?  

  Leakage theory asserts that deception is cognitively and emotionally complicated, making the process difficult to 

control, so deceivers often leak cues in the form of verbal and non-verbal behaviors (Ekman 1985; Ekman and Friesen, 

1969). The leakage of cues is what allows deception to be detected at all.  If those being deceived are observant to the 

verbal and non-verbal behaviors of others, deceivers stand a better chance of getting caught.  According to such media 

theories as Media Synchronicity Theory (Dennis, Fuller & Valacich, 2008), different media have different capabilities. 

These capabilities include transmission velocity, symbol set variety, parallelism, rehearsability, and reprocessibility.  For 

example, face-to-face communication should be high in transmission velocity and symbol set variety and low in 

parallelism (the capability to send and receive messages across multiple channels simultaneously), rehearsability (the 

capability to carefully plan and edit a message before sending), and reprocessibility (the capability to examine a message 

carefully as much as needed). Two-way SMS texting, at the other extreme, would be moderate in transmission velocity, 

low in symbol set variety and parallelism, and high in both rehearsability and reprocessability.  Different media capability 

combinations should render some media able to transmit more cues to deception, compared to others.  Compared to 

texting, face-to-face communication (or its electronic equivalent, videoconferencing) should provide more cues to 

deception, given that texting can transmit verbal communication only.  Rao and Lim (2000) linked a medium’s capability 

to transmit the maximum number of cues to more success in deception detection (Table 6).  A medium’s capability to 

transmit a variety of cues influences the accuracy of deception detection, such that the availability of more cues should 

be associated with more accurate deception detection.   

  As shown in Table 6, for the 14 cues to deception that are listed, all 14 can be detected in full audiovisual media, such 

as videoconferencing.  Nine can be detected in audio; seven can be detected in written media; and five can be detected 

on video-only media.  If detection accuracy is improved when more cues to deception are available, which leakage theory 

implies, then the use of full audiovisual media should result in the most accurate deception detection.  Hence: 

Hypothesis 3: Media that can transmit more cues to deception will be associated with more accurate deception detection, 

compared to media that transmit fewer cues.  
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Table 6. Cues to deception across various media (from Rao and Lim 2000) 

Behavior Audio video Video Only Audio Only Written Media 

Visual 

Pupil dilation Detectable Detectable 

Blinking Detectable Detectable 

Facial segmentation Detectable Detectable 

Adaptors Detectable Detectable 

Bodily segmentation Detectable Detectable 

Paralanguage 

Response length Detectable Detectable Detectable 

Speech errors Detectable Detectable Detectable 

Speech hesitations Detectable Detectable 

Pitch Detectable Detectable 

Verbal 

Negative statements Detectable Detectable Detectable 

Irrelevant information Detectable Detectable Detectable 

Immediacy Detectable Detectable Detectable 

Leveling Detectable Detectable Detectable 

General 

Discrepancy 

Detectable Partially detectable Partially detectable 

3. Research Methods

  The study had two primary aspects, the creation of the stimulus materials and the experimental sessions in which judges 

were asked to determine the veracity of the stimulus materials.  Both aspects are described below. 

3.1 Stimulus Materials and Measures 

  The two stimulus sets used in this study were created in a similar fashion (Figure 2).  In both cases, students were asked 

to attend an experimental session, where they would be interviewed, and to bring along a personal résumé.  The sessions 

were held in the same rooms recruiters would use for job interviews. They were met by an experimenter, who reviewed 

their résumés and asked them to complete an application for a fictional scholarship that might be offered by their college. 

They were told it was all right to make themselves look good on the application, but they were not asked to be dishonest. 

The researcher then collected the applications, which were provided to an interviewer. For the US English stimulus set, 

each student was interviewed by another student via VoIP. For the Australian English stimulus set, the researcher who 

greeted the student conducted the interview.  In both instances, students were asked about the information on the 

applications, regardless of whether it was true or not.  In many cases, students then had to defend information they knew 

was false.   

All interviews, of 20 US students (from the panhandle of Florida) and 21 Australian students (from Queensland), were 

recorded.  Researchers reviewed all of the recorded material in order to create the stimulus sets. The résumés acted as 

ground truth, so by comparing the contents of the résumé to the application, researchers could tell what information on 

the applications was false. The researchers were looking for parts of each interview that were false and for parts that 

were true. They selected 16 snippets, half of which were true and half of which were false. These snippets were selected 

from the set of all 20 (USA) or all 21 (AUS) recorded interviews. The final stimulus set for each national culture consisted 

of a total of 32 recorded snippets.  In addition to balancing them in terms of honesty, the researchers also balanced them 

in terms of media. Eight snippets were selected for each of four media representations: full audiovisual, video-only, 

audio-only, and text.  For video-only snippets, the audio portion of the snippet was removed.  For audio-only, the video 

portion was removed.  The text snippets were transcribed from the interviews.  The 32 snippets were then randomly 
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ordered to complete the stimulus set.  The US English stimulus set was created for a doctoral dissertation (Lewis, 2009), 

based on recordings created in an earlier study (Tilley, 2005).  The Australian English stimulus set was created by the 

authors during the summer of 2016 at a major Australian university.  Each stimulus set was used to create a questionnaire 

in Qualtrics.  

Figure 2. Flowchart of stimulus materials preparation 

3.2 Veracity Evaluation 

  A different set of students was recruited to be veracity judges in a set of separate experimental sessions, later in 2016. 

A total of 36 undergraduate students enrolled in the business school of a major Australian university, and 40 

undergraduate students at a Midwestern American business school, were recruited to judge the veracity of the stimulus 

materials (Figure 3). Half were randomly assigned to view the US English stimulus set, and half observed the Australian 

English set.  Of the 36 participants at the Australian university, 19 self-identified as Australian. Seven of those were 

exposed to the US English stimulus set; 12 were exposed to the Australian stimulus set.  At the US university, five 

students did not self-identify as Americans.  Of the 35 who did, 16 were exposed to the US English stimulus set; 19 were 

exposed to the Australian set. It was important to the study, where the veracity judges needed to be representative of a 

particular national culture, that only the judgments of students who identified as either Australian or American be 

analyzed. 

Each judge was asked to watch, listen to and/or read each of the 32 snippets in one or the other stimulus set and to then 

indicate the veracity of each on a 7-point scale that ranged from ‘1’ for ‘very honest’ to ‘7’ for ‘very dishonest.’  If the 

participant selected 5, 6 or 7, the next window that opened asked the participant to describe why he or she believed the 

snippet to be dishonest.  Participants averaged about one hour in completing this part of the study.  They were asked to 

answer a series of questions that measured five of Hofstede’s cultural dimensions (Hofstede, 1980; 2008; Hofstede, 

Hofstede, Minkov, & Vinken, 2008; Srite & Karahanna, 2006).  The dimensions were measured on a 5-point scale, 

varying from ‘1’ for ‘strongly agree’ to ‘5’ for ‘strongly disagree.’ 

4. Analysis & Results

  Before we present the analysis of detection accuracy across cultures, using repeated measures logistic regression, we 

present the results of measuring the cultural dimension scores of both Australian and American study participants. 
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Figure 3. Experimental flowchart 

4.1 Tests for Hofstede’s Cultural Dimensions 

Culture is a macro-level construct, so it often lacks precision in explaining individual-level behavior (Srite & Karahanna, 

2006).  Accordingly, it is inappropriate to use country scores, as developed by Hofstede (1980), or an individual’s 

national citizenship, to predict individual behavior based on cultural values and beliefs (Furner & George, 2012; Straub, 

Loch, Evaristo, Karahanna, & Srite, 2002).  Therefore, we measured cultural dimensions for each individual study 

participant. 

We used measurement items published by Srite and Karahanna (2006) to measure Hofstede’s dimensions.  To test for 

the adequacy of four of the scales, we used factor analysis.  We used exploratory factor analysis because of past 

psychometric issues with the scales (Lewis, 2009; Furner & George, 2012; George et al, 2018). There were serious 

problems with the six items used to measure uncertainty avoidance, and four other items were problematic, so all 10 of 

these items were dropped.  The factor analysis results, based on varimax rotation and three forced factors, are shown in 

Table 7. Once the problematic items had been pruned, the reliabilities for the remaining items were reasonable (MF: 

.782; PD: .557; IC: .690).  We averaged the remaining items for each scale to compute scores for the dimensions.  We 

did not measure indulgence vs restraint.  For the long- vs short-term orientation dimension, we used the following 

formula, where the m variables refer to items in the scale (Hofstede, 2008; Hofstede, et al., 2008) and C refers to a 

constant: 

LT = 40(m18 – m15) + 25(m28 – m25) + C(ls) 

  Table 8 reports the US and Australian scores for the four cultural dimensions we could measure. Australians and 

Americans participants scored virtually the same on these four cultural dimensions, underlying the similarity of the 

cultures. One way ANOVA tests showed no statistically significant differences between Australians and Americans for 

each dimension. The first three dimensions were measured on a five-point scale.  For individualism/collectivism, higher 

numbers indicate individualism, so the scores for both nationalities are in line with Hofstede’s measures.  For 

masculinity/femininity, lower numbers are masculine, so again, the results are consonant with expectations.  The scores 

on long/short term orientation are also in line with expectations, towards the short-term orientation end of the scale.  The 

only questionable scores are for power distance, which should be higher, indicating less tolerance for inequality.  Despite 

the latter finding, the sample of Australians and Americans seems to be largely representative of what Hofstede’s 

measures (Hofstede, 2016) indicate they should be. 
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Table 7. Factor analysis results for 

four of Hofstede’s cultural 

dimensions for the Australian sample 

1 2 3 

MF3 .794 .107 .276 

MF2 .793 .092 .013 

MF1 .737 .126 .147 

MF5 .727 -.013 .108 

IC3 -.014 .757 .173 

IC5 -.186 .661 .158 

IC1 .247 .630 -.006 

IC2 .392 .605 -.151 

IC4 .013 .592 -.317 

PD3 -.087 -.291 .641 

PD5 .262 .184 .597 

PD1 .023 .016 .563 

PD7 .330 .396 .554 

PD2 .295 -.026 .524 

Table 8. Measured scores on Hofstede’s cultural dimension 

for Australians and Americans. 

Cultural Dimension Australia USA 

Individualism/Collectivism (IC) 2.95 3.02 

Masculinity/Femininity (MF) 1.81 1.87 

Power distance (PD) 2.07 2.12 

Long Term Orientation (LT) 39.41 59.56 

4.2 Tests for Relationships between Deception and Culture and Media 

  We had three hypotheses. The first predicted that representatives of a national culture would be able to successfully 

detect deception in both members of their own culture and in members of other cultures. As we have seen, people tend 

to be only as good as chance at accurate deception detection, so a score of 50% or higher indicates successful detection. 

No statistical test is needed to determine if H1 is supported – it will be supported if detection accuracy levels are at 50% 

or above for both cultures being judged, that of the judge and that of the other culture. H2 asked about the relative 

accuracy of judges for members of their culture and for members of other cultures. It predicted that there would be no 

relative differences in detection accuracy, given the comparison of similar American and Australian cultures. Due to the 

repeated measures of the design and the binomial nature of the dependent variable, H2 will be tested with repeated 

measures logistic regression. Finally, H3 predicted that there would be a media difference in detection accuracy, such 

that media that can transmit the fewest cues to deception would be associated with less accurate detection than would 

media that can transmit more cues. H3 will also be tested with repeated measures logistic regression, for the same reasons 

as H2. With data similar to ours, both George et al (2018) and McHaney et al (2018) used repeated measures logistic 

regression for testing their hypotheses. 

  We analyzed the relationships between culture and deception detection accuracy, and between media and deception 

detection accuracy, using repeated measures logistic regression, in SPSS Version 23. The GENLIN command was used, 

with a binomial distribution and logit as the link function. Repeated measures were used, as each participant answered 

32 different questions. Given that each of the 54 judges was asked to respond to 32 snippets, 1728 responses were 

generated. 

  Logistic regression was used since the dependent variable, whether or not the veracity judgment was correct, was 

binomial (correct or incorrect). The 7-point scale on which veracity was originally measured was collapsed into a discrete 

variable, where scores of 1 to 3 were considered a judgment of truth, and scores of 5 to 7 were considered a judgment of 

dishonesty. The 228 responses of ‘4’ (i.e., undecided), at the center of the 7-point scale, were omitted from the analyses. 

The total number of responses omitted represented 13.20% of the total number of responses received. (Australian judges 

answered ‘4’ 74 out of 608 times, or 12.20%; US judges answered ‘4’ 154 out of 1120 times, or 13.75%.) The predictive 
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factors were communication media and stimulus set. 

  Overall, participants correctly distinguished between honest and dishonest snippets 53.90% of the time (51% correct 

for US English and 56% correct for Australian English).  Australians successfully detected deception in both Australian 

(57%) and American (50%) snippets; Americans successfully detected deception in both American (51%) and Australian 

(56%) snippets. The results of the logistic regression analysis showed that the culture of the treatment was statistically 

significant ((Χ2 (1, N = 1500) = 4.591, p ≤ 0.032).  It was more difficult to accurately detect deception in the US English 

stimulus set than in the Australian English set.  The Australian and the American judges all had trouble with the American 

snippets. Their success with the American snippets was no different from chance (two-tailed tests: USA judges, USA 

snippets: t(436) = 0.287, p < .774; AUS judges, USA snippets: t(197) = .071, p < .943).  Success with the Australian 

snippets was better than chance for both sets of judges (USA judges, AUS snippets: t(530) = 2.887, p < .004; AUS judges, 

AUS snippets: t(337) = 2.470, p < .014). 

  The logistic regression analysis also showed a statistically significant difference for media (Χ2 (3, N = 1500) = 14.402, 

p ≤ 0.002).  A Bonferroni matched pair test (α < .05) showed only one statistically significant difference: detection was 

more accurate in audiovisual snippets (60% correct) than in text (47% correct).  The audio only snippets had an accuracy 

rate of 53%, while video only snippets had an accuracy rate of 54%. There was no interaction between culture and media. 

  When analyzing the data separately for the two groups of judges, we found that there were no statistically significant 

differences for culture.  There were differences for media, though.  While Australians were 50% accurate with the US 

English stimulus set and 57% accurate with the Australian English set, the differences were not statistically significant. 

For media, they were better with full audiovisual (63% accuracy) compared to video only (50%) ((Χ2 (3, N = 534) = 

8.778, p ≤ 0.032). Analysis of the data from the perspective of US judges was similar.  They were 51% accurate with the 

US English stimulus set and 56% accurate with the Australian set, but the differences were not statistically significant.  

For media, US judges were better with full audiovisual (58%) than they were with text (47%) ((Χ2 (3, N = 966) = 10.119, 

p ≤ 0.018). 

  We found, then, that both Australian and US judges were able to accurately detect deception in both the US English 

and Australian English stimulus sets, with success rates at or above 50% for each cultural group.  However, there were 

no statistically significant differences in their detection accuracy across cultures. We also found that each group of judges 

was better at detection in one medium over another: audiovisual beat video-only for the Australians, while audiovisual 

beat text for the Americans. Overall, the judges were more successful with audiovisual snippets than they were with text. 

The answer to both of our research questions -- 1) Can individuals of one culture accurately detect deception in 

individuals from another culture? and 2) Is there a relationship between deception detection and media? -- is yes.   

5. Discussion

  The reach of global communication has spread rapidly in the past decade, due in part to the availability of smartphones. 

Smartphones allow relatively inexpensive access to the internet and access to people all over the world through text 

messaging and voice/video calls.  And with that increase in communication comes an increase in exposure to deception, 

within our own culture and across the world’s many cultures.  Can we discern deception on the part of people from 

cultures other than our own?  And the communication media that we are using make a difference in how easy it is for us 

to discern deception? 

  Based on our findings in this study, the answer to both of these research questions is affirmative (Table 9). Australian 

judges were able to discern deception in the communication of both Australians (at 57%) and Americans (although the 

accuracy rate for the US English stimulus, at 50%, is low and just meets the threshold for determining if deception 

detection is successful (Bond & Atoum, 2000; Bond, et al., 1990)).  US judges were also able to detect deception in the 

communication of both Americans (51%) and Australians (56%).  Hypothesis 1 is supported. Neither group of judges 

was better with one group or the other, supporting Hypothesis 2.  Our findings provide additional support to the ‘universal 

cue hypothesis,’ which says that people can successfully detect deception, regardless of the culture of the sender or the 

receiver.  Based on the results of this study, the Australians would fill an additional cell in Table 3, in the ‘no difference’ 

column, as would the Americans.  Table 3, with these additions, is reproduced here as Table 10. The reason for the 

finding of ‘no difference’ no doubt lies in part in the extreme similarity between Australian and US cultures.  This finding 

may seem obvious to some, but there have been no prior tests of deception detection abilities across national cultures, 

where the cultures were so similar.  All prior studies involved national cultures that varied widely from each other. 
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Table 9: Summary of hypotheses tests 

H1: Members of a national culture will be able to accurately 

detect deception among members of their own culture and in 

members of other cultures. 

Supported: Australians successfully detected 

deception in Australian (57%) & American (50%) 

snippets; Americans successfully detected 

deception in American (51%) and Australian 

(56%) snippets. 

H2: Australian and US judges will be able to detect deception 

equally well both within and across their cultures. 

Supported: The differences in detection across 

cultures were not significant for either Australians 

or Americans. 

H3: Media that can transmit more cues to deception will be 

associated with more accurate deception detection, compared 

to media that transmit fewer cues.  

Supported: Detection success was higher with full 

audiovisual snippets (60%) than with text (47%). 

In Table 10, Australians appear in two columns, ‘better with other groups’ and ‘no difference.’  (Americans appear in all 

three columns.)  Clearly, the ability of members of a cultural group to detect deception across other cultural groups is 

not dependent on the culture of the judge.  Judges from a particular culture perform at different levels, sometimes being 

better detectors of deception in their own group, sometimes better with other groups, and sometimes being equally good 

across groups.  To some extent, the pattern of detection success seems to depend on the differences between the cultures 

of the judge and those being judged.  For cultures that are very similar, like Australia and the US, group members are 

equally good at detecting deception both within their group and in the other group. Where the differences are more 

extreme (Table 5 and Figure 1), differences between cultures seem to be associated with one group doing better at 

detection with the other group than with their own.  What might account for this outcome?  One possibility: A bias 

against foreigners, in particular a bias against foreigners speaking in a second language (Bond & Atoum, 2000; Evans & 

Michael, 2013; Castillo et al., 2014).  As Castillo and colleagues report in their 2014 study of Australians judging 

Australians and Colombians, “the difference in response bias across cultures was in the direction that suggests a tendency 

to greater suspicion of people from another culture – i.e., Colombian clips, in particular, those speaking in a second 

language” (p. 79). Such a bias, conscious or not, might motivate veracity judges to be suspicious of foreigners, leading 

to better detection of deception among members of those groups, as compared to their own group.  Differences across 

cultures would influence a judge’s detection success, where extreme differences would result in better detection with the 

other group than with his or her own. 

Table 10. Patterns of comparative deception detection success across cultures in four studies 

Better in own group 

(compared to other groups) 

Better with other group (compared to their 

own group) 

No differences 

Americans (judging Americans & 

Jordanians) (Bond & Atoum, 2000) 

Jordanians (judging Jordanians & 

Malaysians) (Al-Simadi, 2000) 

Indians, Americans & 

Jordanians (judging Indians) 

(Bond & Atoum, 2000) 

Jordanians (judging Americans & 

Jordanians) (Bond & Atoum, 2000) 

Malaysians (judging Jordanians & 

Malaysians) (Al-Simadi, 2000) 

Australians (judging 

Americans) (current study) 

Spaniards (judging Spaniards & 

Americans) (George et al, 2018) 

Australians (judging Australians & 

Colombians) (Castillo et al, 2014) 

Americans (judging 

Australians) (current study) 

Indians (judging Indians & 

Americans) (George et al 2018) 

Americans (judging Americans, Spaniards 

& Indians) (George et al, 2018) 

  We also found a main effect for media.  As mentioned previously, there is some evidence of a direct relationship 

between media and deception detection, but many studies have found that the relationship is mediated.  We found 

evidence of a direct effect, however.  Across both groups of judges, those watching full audiovisual snippets were better 

at detecting deception than those who viewed text. This finding supports Hypothesis 3, that deception detection would 

be more successful with media that transmit more cues to deception than with media that transmit fewer cues.  According 

to Rao and Lim (2000), full audiovisual media transmit 14 cues to deception, and text transmits half as many (7).  What 

is perhaps more interesting is that media effects differed with each group of judges.  While US judges were better at 

detection with full audiovisual compared to text, Australian judges were better at detection with full audiovisual than 
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with video-only communication.  Based on Rao and Lim’s work (2000), video-only modes of communication convey 

only five cues to deception.  These findings are consonant with earlier findings regarding culture, deception and media. 

In the first study conducted by Bond and colleagues (1990), the researchers concluded that people could not accurately 

detect deception across other cultures, and their videos had no sound.  In Bond’s second study (with Atoum, 2000), the 

researchers concluded that people could detect deception across other cultures, but this time, the videos had sound.  While 

it is interesting that media effects differed across cultures, the reasons why are not clear. 

6. Limitations, Implications and Future Research

  Although the unit of analysis was the veracity judgment, a limitation of this study was the relatively small number of 

participants who self-identified as being from either Australia or the US.  Of the 76 participants in the study, we were 

not able to use data from 22 of them (which translates into 704 veracity judgments).  We would also have preferred a 

more balanced sample of US and Australian judges.   

  Our findings have two implications for research. First, we have provided additional evidence that the universal cue 

hypothesis holds, even when the cultures being compared are very similar. Previous research found support for the 

hypothesis when the cultures being compared varied quite a bit from each other. Apparently, the cues that senders give 

off when deceiving are recognizable to members of both similar and dissimilar national cultures (as well as to members 

of their own cultures). Second, we now have an additional data point for cultural comparison with the inclusion of the 

Australian sample and the creation of our Australian English stimulus set. Unlike the other cultures and stimulus sets, 

the Australians were selected because of their similarity to other cultures, not because of their differences. We now have 

a broader spectrum from which to study cultural dimensions and deception detection.  

  Our findings also have implications for practice. The universal cue hypothesis holds across several cultural 

comparisons. For interrogators or judges, or anyone else whose job involves determining if someone is telling the truth, 

in most cases they can rely on the indicators of deception they have learned, in life or through training. What they have 

learned to look for in detecting deception works as well for people from any other culture as for people from their own. 

Specifically, for American interrogators, they should approach deception detection in Australian interviewees the way 

they approach the task with American interviewees, and vice versa. Our findings about media support the premise that 

media with the most cues are associated with better deception detection. When it is possible to select the best medium 

for interviews, where detecting the truth is important, interrogators should choose the medium that conveys the most 

cues to deception. Full audiovisual, such as videoconferencing, is more effective than text-based media, such as email. 

For Australian judges, as opposed to the entire sample of participants, full audiovisual was better than video without 

sound, again supporting the more-cues-is-better for detection accuracy thesis. 

7. Conclusions

  We now have enough cross-cultural deception detection comparisons to move beyond the question of whether people 

can successfully detect deception across cultures.  They can.  Now we can try to better understand why there are 

differences in detection outcomes: Why one group can detect deception better in another group compared to their own, 

while yet another group is better at detecting deception in their own group compared to others.  And as this study has 

shown, in some cases groups are equally good at detection in both their group and another.  A bias against foreigners is 

one possible explanation for some of these findings, especially when the foreigner, who typically speaks a different 

language, is now speaking “your” language.  A selective comparison of more cultures and languages can be conducted 

to help produce a more complete understanding.  From the few studies that have investigated media, culture and 

deception, we do have consistent evidence of media effects.  Video-only communication seems to be the worst for 

deception detection.  However, it is interesting to note that media effects seem to differ across judges from different 

cultural groups.  Additional research is called for to investigate this intriguing finding. 
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Abstract 
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explore the role of collaboration maturity and present a new comprehensive framework that may help understand and direct 

new regional collaborative efforts. The findings suggest that an alliance of business, education, and economic development 

partners can move a region forward in ways that are difficult for single players to achieve. We find that the Northeast 

Wisconsin region has been able to achieve coordination between K-12, higher education, and employers to improve on 

awareness of the problems that each part of the talent pipeline is facing. With an increase in collaboration maturity, the 

organization was able to relatively easily transition to virtual activities as well as assemble new constellations of 

collaborative efforts in short order when faced with the COVID-19 crisis. 
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1. Introduction

   In the early part of the 2010’s, businesses in the Northeast Wisconsin region faced significant challenges recruiting and 

retaining IT talent. As a result, they joined forces with area universities, K-12 schools, non-profits, and economic 

development agencies to form what was originally known as the NEW IT (Information Technology) Alliance is now 

referred to as the NEW Digital Alliance1. This paper explores the events that led to the formation of this Alliance, the 

increasing maturity of the Alliance, and the impact of the Alliance on IT talent in the region from 2015 through the 

COVID-19 outbreak.  

   Then as now, organizations struggled to fill the growing demand for information technology (IT) jobs. In fact, demand 

for IT talent is expected to grow 12.1% from 2019 to 2029 with an estimated 48,941 new IT-related jobs opening each 

year (U.S. Bureau for Labor Statistics (BLS), 2020). The IT field is projected to see the third-fastest growth after health 

care and community and social support occupations. At the same time, interest in IT-related academic majors has not 

kept pace with the rapidly increasing demand (National Center for Educational Statistics, 2018). This imbalance is 

causing significant talent shock in the marketplace and causing companies and colleges to explore heretofore unexplored 

options and possibilities. 

   Individual organizations have adopted comprehensive talent management, recruitment, and acquisition programs. 

These programs have included recruitment software and applicant tracking systems, social networking sites, video 

interviews, as well as formalized onboarding and training programs (Jose, 2019). Traditionally, these efforts have been 

carried out by individual companies.  Even with these efforts, IT talent issues have consistently ranked as the second or 

third most worrisome concern of CIO’s over the past 7 years (Kappelman et al., 2020). The inability to solve these issues 

independently led individual leaders from these companies to seek a more collaborate approach to the talent shortage. 

   Similarly, individual colleges and universities have attempted to address the challenges of increasing enrollment 

through the development of new majors, minors, and certificate programs. Some of these programs include artificial 

intelligence, big data analytics, business intelligence and analytics, cybersecurity, ERP, Internet of Things (IoT) (Case 

et al., 2019). As with individual organizations, these colleges and universities often worked in isolation.  

   In response to this talent shortage, the Northeast Wisconsin Digital Alliance (NEW Digital Alliance) was founded in 

2015 to address the talent shortage in the Northeast Wisconsin area. This article explores the establishment and 

maturation of the NEW Digital Alliance. Guided by the work of Schilling (2015), who focused on technological 

collaboration and innovative outcomes, as well as Morgan (2012), who developed a collaboration maturity model, we 

explored three key areas. First, inflection points that highlight the transition from one phase of maturity to the next were 

identified. Second, the relationship between the NEW Digital Alliance maturity and the overall collaboration network 

maturity was explored. Finally, innovative outcomes from the collaboration were identified. As we face the ongoing 

challenges of the COVID-19 crises, the findings of our research can be applied to new networks being developed to face 

new challenges. 

   This paper is organized as follows. The next section covers the theoretical background around collaboration networks 

and alliance formation as well as collaboration maturity.  Section 3 describes the single-case study research method that 

was used to guide the research as well as an overview of the case environment. Section 4 provides a detailed case 

description and analysis. Section 5 provides a discussion on the findings. Finally, the conclusion includes a summary, 

limitations, and direction for further research. 

2. Theoretical Background

   In an effort to explore and understand our case study as well as develop research questions, we explored established 

literature on collaboration networks and alliance formation as well as collaboration maturity. While studying these 

individual theories, we identified that prior research had not integrated them into a comprehensive framework. Data from 

the case study helped showcase concepts from these theories to explain how a regional collaboration can form and mature. 

1 For clarity, in the rest of this paper we will refer to the organization by its current name, NEW Digital Alliance, or simply 

‘the Alliance.’ 
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2.1 Collaboration Networks and Alliance Formation 

   Uncertainty motivates firms to enter into alliances (Frankort et al, 2016). Schilling (2015) identified the relationship 

between a technology shock, alliance formation, collaboration network, and the resulting innovation outcomes (Figure 

1). In this model, a triggering event, such as the introduction of a new technology, facilitates the formation of an alliance 

of firms as well as the larger collaboration network. Consequently, the alliance formation directly positively contributes 

to the development of the collaboration network. The alliance formation contributes to, supports, and generally guides 

the collaboration network. Both the alliance formation and collaboration network result in innovation outcomes. For 

Schilling (2015), the network included firms, government labs, universities and other organizations that together 

represented significant components of the global technology network. Schilling (2015) measured the innovation 

outcomes by the number of patents issued. 

Figure 1: Technology shocks, technological collaboration, and innovation outcomes. Adopted from Schilling (2015). 

   This model has also been used to explore interorganizational knowledge transfer (Milagres & Burcharth, 2019). 

Specifically, technology shock was identified as a significant environmental uncertainty that facilitates knowledge 

transfer. Similarly, the technology shocks and resulting innovation was used to explore technology alliances and market 

cycle (Martynov, 2019). Finally, this model was used as a foundation to show that the growth of an inventor network is 

associated with innovative impacts (Argyres, et al., 2020).  

2.2 Collaboration Maturity Model 

   All organizations mature over time and have unique characteristics at each stage of maturity. The notion of a model to 

describe this growing maturity was first developed and popularized at the Software Engineering Institute at Carnegie 

Mellon University in the 1980s and 1990s. This work resulted in the Capability Maturity Model aimed at describing the 

maturity of software development processes (Paulk et al., 1993). Morgan (2012) used the maturity concept to identify an 

emergent collaboration maturity model for describing stages of a collaboration ecosystem progression. In the Morgan 

(2012) model, collaborative networks progress along five maturity stages that include: Unaware, Exploratory, Defined, 

Adoptive, and Adaptive. The primary goal is to reduce the strategic value gap and deliver greater business value. The 

strategic value gap represents the gap between current maturity and business value achieved from a fully adaptive 

organization. As the collaborative network matures, the strategic value gap declines and the overall business value 

increases. Figure 2 shows the five levels of maturity and provides a definition of each level.  

   The five phases of collaboration maturity can be assessed along five characteristics: goals and objectives, 

organizational culture, process, technology, and governance.  
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2.2.1 Goals & Objectives 

   Goals and objectives represent the outcomes that an organization hopes to achieve. Morgan (2012) identified the 

following organizational levels: company, department, employee, and customer. In the Unaware phase, goals and 

objectives have not been stated at any level. During the Exploratory phase, they have been explored. In the Defined 

phase, goals and objectives have been defined. During the Adoptive phase, they have been formally communicated. 

Finally, in the Adaptive phase, goals and objectives have been adapted to the particular situation of the collaborative 

network. 

Figure 2: Emergent Collaboration Maturity Model. Adopted from Morgan, 2012. 

2.2.2 Organizational Culture 

   Organizational culture can be defined as ensuring that collaboration is valued and incentivized. Morgan (2012) 

identified the following components of organizational culture: leadership, organizational change management, ensuring 

evangelists, fostering openness, and establishing mutually beneficial value. In the Unaware phase, the organizational 

culture components are not addressed and have no sponsorship. During the Exploratory phase, these components begin 

to be identified and discussed. In the Defined phase, many of the organizational culture components are defined and 

secured. During the Adoptive phase, the components are initially communicated and executed. Finally, in the Adaptive 

phase the components are formally communicated and adapted.  

2.2.3 Process 

   Process refers to the required organizational changes that will occur to support the maturing collaboration. Morgan 

(2012) identified the following components of process: escalation, automation, and information management. In the 

Unaware phase, the process components are not in place nor considered. During the Exploratory phase, processes and 

plans are identified. In the Defined phase, process components are developed and communicated. During the Adoptive 

phase, the process components are implemented.  Finally, during the Adaptive phase, these components are generally 

adapted as circumstances change.  

2.2.4 Technology 

   Technology can be defined as the technological advances that enable communication, information sharing, and 

collaboration. Morgan (2012) identified the following components of technology: tool selection, integration, training, 

adoption, and maintenance and upgrades. In the Unaware phase, technology is not considered or addressed. During the 
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Exploratory phase, problems and opportunities are identified and technology is considered. In the Defined phase, 

strategies for addressing technology are developed. During the Adoptive phase, the road map for technology is 

communicated and further developed.  Finally, during the Adaptive phase, training occurs, and technology is 

continuously adapted.  

2.2.5 Governance 

   Governance can be defined as ensuring employees understand the policies of the organization. Morgan (2012) 

identified the following components of governance: best practices, guidelines, policies, oversight team, and social service 

level agreements. In the Unaware phase, governance does not exist. During the Exploratory phase, governance is 

recognized as needed. In the Defined phase, approaches are identified, and teams selected. During the Adoptive phase, 

governance components are created and developed. Finally, in the Adaptive phase, governance components are evaluated 

and evolved on an ongoing basis.  

   This model was used to develop the book The Future of Work, Build Better Leaders and Create a Competitive 

Organization (Morgan, 2014). In addition, this collaboration framework was used to provide insight into the adoption of 

social collaboration software (Komarov et al., 2014) as well as to explain the social impact of knowledge work (Getto et 

al., 2014).  

2.3 Research Questions 

   Morgan (2012) highlighted that business value is directly related to organizational maturity. Schilling (2015) focused 

on the value of collaboration. In considering the collaboration maturity model as well as collaboration networks and 

alliance formation, we identified the following research questions:  

1. What are the inflection points that highlight transition from one phase to another phase?

2. How does maturity of the alliance formation contribute to the maturity of the collaboration network.

3. What innovation outcomes occurred? How were they measured?

3. Research Methodology & Case Environment

   In an effort to explore and understand our case study as well as develop research questions, we explored established 

literature on collaboration networks and alliance formation as well as collaboration maturity. While studying these 

individual theories, we identified that prior research had not integrated them into a comprehensive framework. Data from 

the case study helped showcase concepts from these theories to explain how a regional collaboration can form and mature. 

3.1 Research Methodology 

   This revelatory case study seeks to investigate the development and maturation of a collaborative network. As research 

of regional collaborative networks is limited, it is suitable to conduct the study from an exploratory perspective utilizing 

a single case (Eisenhardt, 1989; Yin 2017). Case study methodology is appropriate under specific conditions. Yin (2017) 

notes that a case study is an “empirical inquiry that investigates a contemporary phenomenon within its real-life context, 

especially when the boundaries between the phenomenon and context are not clearly evident” (p. 13).  

3.2 Case Environment 

   This case is set in the Northeast Wisconsin economic development region (New North). This region is made up of 18 

counties covering roughly a quarter of the state of Wisconsin. Figure 3 shows a map of the region. The primary economic 

development organization for the region is New North Inc, which was established with a mission “to be the catalyst for 

regional prosperity for all through collaborative action”. The primary industries in the region include transportation 

equipment manufacturing, dairy product manufacturing, foundries (pulp, paper, paperboard manufacturing and 

converting), electrical equipment manufacturing, machinery manufacturing, and fabricated metal product manufacturing. 

Manufacturing in the region has become increasingly reliant on technology and 25% of the workforce is estimated to 

work in advanced manufacturing industries (New North 2020). 
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Figure 3: Map of the 18 counties that make up Northeast Wisconsin 

   Having been involved in the IT community in the region for several decades, the authors have observed the changing 

demands for IT professionals in the region and the desire to collaborate at the regional level. In the late 1990s, demand 

for talent was strong and students responded by enrolling in IT-related programs in very large numbers. For example, in 

1999-2000 the Information Systems major at University of Wisconsin Oshkosh was the largest in the college. However, 

student demand dropped sharply and by 2004, the major had shrunk to 10% of its size 5 years prior and it stayed at that 

level for about 10 years.  

   One of the authors was involved in the very early days of the NEW Digital Alliance in 2014 and 2015 when it was just 

a loose affiliation of companies, universities, K12 schools, and interest groups, and was able to follow the early stages 

of the formation of the collaboration. Another of the authors was a founding member of Women in Technology and chair 

of its WIT4Girls program aimed at increasing opportunities for girls ages 5-18 to experience IT. She was later hired as 

the first director of the NEW Digital Alliance and has been instrumental in the increased level of collaboration in the 

region as well as the maturation of the collaboration efforts. The final author has extensive consulting, strategic planning, 

and IT project management experience in a number of companies and organizations in the region before joining UW 

Oshkosh as a faculty member. He has since been involved in several NEW Digital Alliance committees and initiatives. 

Because of their close connections, the authors have had many informal conversations about the IT community in the 

region that have impacted the direction of the Alliance, and several other programs in ways that cannot be teased out 

formally. 

   As we discussed the recent efforts in the region, we realized that our experiences provided us with a unique vantage 

point from which to provide an inside account of the formation and shaping of strong regional collaborative efforts aimed 

at strengthening the local IT community for both employers, students, and IT professionals. 

4. Case Description & Analysis

   In Northeast Wisconsin, over the past several years, the need for an increased number of technology-educated and 

technology-trained employees has been recognized (Matzek, 2018). Several organizations started to explore this issue 

but without a central hub for this developing network, activities were not well coordinated.   

   Through the formation of the formal NEW Digital Alliance with a dedicated full-time director, the region has been 

able to move up the levels of maturity. The Alliance now plays a central role in coordinating and organizing a number 

of activities as well as being a central hub for information about all the events in the region through a website, monthly 

newsletter, and robust social media presence. This section will describe the development of the organization and how it 

fits in the collaboration maturity model. As part of this narrative, we have identified several inflection points of particular 
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significance that signaled maturation of the Alliance. Figure 4 shows a timeline of all the inflection points. This section 

is organized by stage on the collaboration maturity model. 

Figure 4: Reflection Points Between Maturity Levels 

4.1 Unaware Stage (prior to March 2015) 

   In the early 2010s, IT leaders in Northeast Wisconsin businesses gradually realized that it had become difficult to find 

the necessary IT talent. In spite of this, educational institutions did not see an uptick in students to meet the demand. 

However, with no shared understanding of the problem among businesses, companies largely felt they were alone with 

the problem of finding IT talent, and educational institutions felt no pressure to systematically increase offerings or 

attempt to draw more students. With no collaboration, and moreover, no real sense that there was a problem, the region 

was firmly in the Unaware stage as shown in Table 1. 

   In early 2015, a small group of IT leaders in the region started discussions about how to solve the problem across the 

region so as to avoid cannibalizing IT employees from each other but instead increase the supply of IT talent in the entire 

region. We identify the first meeting of this group in March 2015 as the first inflection point towards moving from the 

Unaware stage towards exploration of a collaborative approach to solving the IT talent crisis. 

Characteristics Assessment Description 

Goals & 

Objectives 

Vague Vague realization that problems with finding IT talent are shared across many 

companies. No specific goals or objectives. 

Culture Unaddressed Not addressed. 

Process None Nothing in place. 

Technology Unaware Nothing in place. 

Governance None Ad hoc leadership team. 

Table 1. Unaware Stage (Prior to March 2015) 
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4.2 Exploratory Stage (2015-16) 

   For about two years, efforts to solve the IT talent problem were driven by various individuals and organized groups. 

The NEW Digital Alliance grew out of these efforts and was envisioned as a forum to coordinate the disparate efforts 

across the region that were hampered by the lack of dedicated focus on collaboration and coordination. Each stakeholder 

group had specific motivations to be included. Businesses sought to improve the talent pipeline, thus reducing recruitment 

and hiring costs. Universities sought to raise enrollments in these high-value STEM majors. Several of the founders, 

nearing the end of their active careers, sought to positively impact the region. 

   Table 2 shows the primary characteristics of the efforts during this period that culminated with the hiring of a director 

for the Alliance. We characterize this as the Exploratory phase as the focus was on considering goals, identifying leaders, 

seeking sponsorships, and recognizing the need for additional governance. 

4.2.1 First Meeting - March 2015 

   In 2015, Northeast Wisconsin business and educational institutions partnered to form what first became known as the 

NEW IT Alliance and later the NEW Digital Alliance. From the first meeting in March 2015, the group invited business 

partners, higher education, K-12 schools, non-profits, workforce development agencies, economic development 

agencies, chambers of commerce and others to participate in roundtable discussions on how to solve the problem. At 

these quarterly meetings it became clear that many organizations in the region were working to solve the same issue but 

with limited coordination. This alliance began to explore the issue of the IT Talent Pipeline and potential paths for 

approaching this issue. Meetings often had 40-50 people in attendance, and all were involved in working on various 

initiatives to help solve the problem. The meetings consisted mostly of updates on various initiatives going on around 

the region with an attempt at establishing collaboration where appropriate. Appendix A includes a list of the partners in 

the region that helped form the Alliance and have collaborated since then.  

4.2.2 Survey of IT Talent Issues 

   One of the first formal activities of the organization included working with Northeast Wisconsin Educational Resource 

Alliance (NEW ERA), a collaborative of all the higher education institutions in the region, to conduct a survey of 

businesses in the region to determine the extent of the problem of hiring IT talent. The NEW ERA survey showed that 

demand existed for an additional 3,000 IT employees by 2021. One of the issues that became clear from the survey and 

the follow-up meetings around the region to present the results to groups of businesses was that many businesses were 

unaware that the problem of finding IT talent extended beyond their own organization. The survey results raised the 

awareness that a broader problem existed. 

4.2.3 Volunteer Efforts Continue 

   The community leaders who were informally leading the regional discussions realized in 2016 that they were 

hamstrung by not having someone who could dedicate full-time attention to the issues raised. It became a problem that 

little progress was being made between the infrequent meetings. So, a consortium of businesses and higher education 

institutions decided to pledge enough money to hire a full-time director for the Alliance.  

   During 2016, the Alliance began to coordinate activities offering a central hub to the growing distributed network of 

organizations, businesses, and educational institutions focused on this challenge. The group discussed how to achieve 

open communication of goals and activities, sponsorship of the entire network, governance of the network, and goals and 

objectives.  

4.2.4 Hiring of Director 

   This process concluded in November 2016 with the hiring of a full-time director for the organization, which we 

identified as the second inflection point, as it allowed the organization to have a person dedicated to coordinating the 

various efforts and increasing collaborative maturity in the region. The director has a background in IT having worked 

13 years at a large local employer. As a founding member of Women in Technology Wisconsin and leader of their 

WIT4Girls initiative, she had deep connections to the broader IT community in the region. 
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Characteristics Assessment Description 

Goals & 

Objectives 

Initial Goals 

Defined 

These goals included the hiring of the full-time director (Nov. 2016), legal 

registration of the organization, and funding to ensure initial and ongoing 

operations.  

Culture Developing Collaborative networks forming and growing across the region. 

Process Developing Ad hoc leadership group calling meetings approximately quarterly. 

Technology Unaddressed Email and ad hoc file sharing among the members. 

Governance Developing Leadership team becomes more defined. 

Table 2. Exploratory Stage (2015 - 2016) 

4.3 Defined Stage (2016-17) 

   We identify the period from the end of 2016 through 2017 as crucial for the organization. Having hired a director, the 

focus in this period was primarily on formalizing most aspects of the organization. This included major changes to 

processes, technology, strategy, and governance. This period moved the organization from the Exploratory stage, which 

is primarily about planning and into the Defined stage, which is characterized by having put plans into action. By the 

end of 2017, the organization was vastly different from what it looked like a year earlier. See Table 3 for summary of 

characteristics of Defined stage. 

4.3.1 Initial Director Actions - November 2016 –2017 

   During the director’s first year, most of the effort was focused on establishing the organization and its governance. 

However, the first NEW Connect IT job and Career Fair was also conducted in November 2017. Hiring a director who 

was able to dedicate full-time attention to the organization led to a dramatic increase in maturity with processes being 

defined and technology resources established. During 2017, the following activities were accomplished: 

• Established website with Job Board

• Established initial sponsorship amounts for supporting organizations.

• Launched monthly newsletter

• Established social media channels and hired outside resource to manage social media presence ensuring regular

activity

• Implemented Wild Apricot for event management and communication.

• Hired a college intern to support marketing and social media efforts.

   Towards the end of 2017, the organization was well established with a strong presence in the community a website 

with strong content, social media presence across multiple channels, and a regular newsletter. 

4.3.2 Adopted Strategy - Fall 2017 

   The director led the Executive Committee through a series of discussions to determine a formal strategy for the 

organization. This culminated in November 2017 with the formal adoption of a strategic plan for the organization that 

defined three pillars and three key audiences. Figure 5 lays out the key elements of the strategy.  We identify the adoption 

of the strategy as an inflection point as it provided direction and focus to the efforts of the organization over the next 

several years. 

   The strategy was later refined to define three pillars related to increasing the talent pipeline: Attract, Develop, and 

Retain. The strategy was initially conceived to be very broad in terms of audiences. It included convincing high school 

students to study IT, keeping IT professionals in the region, attracting IT professionals from other regions, and inspire 

working or under-employed adults to pursue an IT career. 
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Figure 5: NEW IT Alliance strategic framework adopted in late 2017 and metrics adopted in early 2018. 

4.3.3 Defined KPIs - Q1 2018 

   The next inflection point followed relatively quickly after the establishment of the strategy as the Executive Committee 

defined formal KPIs for one of the three pillars in the strategic framework: Develop. The goal was set to increase 

enrollments in regional IT programs by 15% for 4-year institutions and 7% for 2-year institutions. It also recognized the 

problem of students dropping out of 2-year programs at high rates by looking to increase the persistence rate in these 

programs from 54% to 59%. 

Characteristics Assessment Description 

Goals & 

Objectives 

Defining throughout 

the period 

Adopt strategy and set metrics. 

Culture Developing Strong collaboration with partners throughout the region. Founders and 

Director setting the tone for the organization. 

Process Defined to Adoptive • Social media presence through a contract with an external

partner. Launched monthly newsletter.

• Hired college intern.

• Held NEW Connect IT (job and career fair).

• Invoicing handled by parent organization (New North).

• No CRM system for membership tracking and invoicing.

Spreadsheets and manual processes used instead.

Technology Selected - in some 

areas 
• Adopted Google as collaboration platform set up as personal

accounts and not with a dedicated business domain.

• Website launched. Adopted software to manage events and

newsletter mailing list as well as collaboration.

Governance Defined • Formalized executive committee with clear roles

responsibilities.

• Formed Talent and Marketing Committees

• Established sponsorship amounts for supporting organizations

Table 3. Defined Stage (2016 - 2017) 
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4.4 Adoptive Stage (2018-19) 

   With the adoption of a strategic framework and defined metrics, the organization signaled a readiness to move into the 

Adoptive stage where the focus shifts to collecting metrics, executing on plans, and strengthening governance. Table 4 

shows the characteristics of the organization during this period as collaboration moved from the Exploratory through 

Adoptive towards the Adaptive stage. 

4.4.1 Data Collection 

   Having defined the KPIs, the organization set out to collect the data necessary to determine progress. This was done 

through an annual survey to each higher education institution for data to show whether enrollment was increasing or 

decreasing. Figure 6 shows the data for 2015-2020 for both 4-year universities as well as 2-year technical colleges in the 

region where data is available for each of the five years.  

Figure 6: Enrollment in college IT programs 

   Simultaneously, the Alliance launched a collaboration with Microsoft to collect data from the K-12 system. That survey 

launched in 2018 as a pilot in two counties before expanding to the entire 18 county region in 2019. This survey collected 

data on both course offerings and enrollments as well as what barriers exist within the K-12 schools to offering more CS 

coursework. Figure 7 shows an example of data available in the dataset. This is the percent of high school students 

enrolled in a few standard CS classes in 2018-19 and 2019-20. As can be seen, most of the courses exhibited significant 

growth year-over-year. In the period, the average number of CS courses run by each district also increased from 3.4 to 

4.2. Gender breakdown across the four traditional computer science courses mirror the trend in higher ed with about 76% 

of students identifying as male. 

Figure 7: Enrollment in high school computer science classes 
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4.4.2 Promoting IT Careers 

   The Alliance was recognized to receive several grants to help boost focus on the K-12 space. The 

Wisconsin Department of Public Instruction awarded $14,000 to support developing IT Career Pathways from the high 

school level through college and into careers. Microsoft granted a $25,000 grant to help grow digital learning 

opportunities for underserved populations. The result was a map connecting high school and college educational 

opportunities in the region to five specific IT careers (DPI, 2019). 

   In fall 2018, the Alliance launched an effort to promote the IT profession in the region by creating a series of videos 

featuring local IT professionals talking about what they find exciting about their jobs and working in the Northeast 

Wisconsin region. This resulted in a series of 10 short videos uploaded to YouTube and made available to schools and 

others in the region to use for the promotion of IT. 

4.4.3 Commitment to Stronger Governance - Fall 2019 

   Towards the end of 2019, it became clear that governance needed to be improved. At that time, the organization had 

the following committees: Executive, Talent, Higher Ed, and Marketing. The Marketing committee had become dormant 

due to lack of engagement from member volunteers whereas the other committees met regularly. Meetings were planned 

and led by the director. It became clear that there was a need for more engagement from committee members. This led 

to an inflection point when the Executive Committee members pledged to become more active in various activities of 

the organization, including participating in the other committees. The Higher Ed committee also elected a chair to help 

the director set the agenda and provide direction for the committee’s work. In the Talent committee, no volunteer for the 

position stepped forward. 

   At the same time, several companies announced plans to drop their membership citing lack of time to engage and 

internal financial constraints.  

   In January 2020, the data collection efforts came to fruition with the publication of key data from K-12 and higher 

education on a dedicated page on the NEW Digital Alliance website (www.newdigitalalliance.org). This Factsheet page 

showed data from the first two years of K-12 data as well as four years of data from the higher education institutions. 

Both sets of data indicated growth among students engaged in IT education. It also highlighted challenges still ahead - 

including demand outpacing supply and a gender imbalance where the number of men far exceed the number of women. 

Figures 6 and 7 show some of the published data. 

Characteristics Assessment Description 

Goals & 

Objectives 

Adoptive • Expanded with a new strategy.

• Launched survey to companies.

• Continuing to collect K-12 and Higher Ed data.

• Planning IT Summit in June 2020 to report on the state of IT

across the region from K-12, Higher ed, and companies.

Culture Exploratory/Defined Lack of engagement may be holding back progress both within the 

Alliance as well as across the larger community in the region. 

Process Adoptive • NEW Connect IT event planning smoother due to experience.

• Social media presence expanded with additional channels and

in-housing some management and content creation to interns.

• Launched videos of IT Professionals.

• Launched Insights on Technology with local publishing partner.

• Added a high school intern to help with website support and set

up regular working sessions with interns.

Technology Adoptive/Adaptive Switch from Google to Microsoft. Standardized on Microsoft as a 

collaboration platform to ensure consistent organizational support and 

access. 
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Governance Adoptive Governance strengthens significantly in this period: 

• Formed Higher Education committee.

• Discussions with the Executive committee on strengthening

engagement. Each member signed up for additional work.

However, limited actual follow-through.

• One executive joined the Higher Education committee, which

also elected a chair so as to not have the director be solely in

charge of the meetings.

Table 4. Adoptive Stage (2019) 

4.5 Next Steps (2020 and beyond) 

   In early 2020, the organization was at a crossroads. The need for IT talent was still strong and a major concern for 

many companies in the region. Enrollment in IT courses in high schools across the region had increased significantly 

and barriers to further growth had been identified. At the higher education level, enrollments had started to slowly 

increase. However, company engagement with the organization had dropped with several member companies 

announcing they were not renewing their membership. Similarly, there was a general lack of engagement from member 

volunteers.   

   Even with these setbacks, the Alliance moved forward on several fronts. Table 5 highlights the movement toward the 

Adaptive stage. 

4.5.1 New Strategy and Renamed Organization - February 2020 

   To help increase the number of member organizations, improve on engagement from member organizations and 

stabilize the financial outlook for the organization, the Alliance embarked on a strategic planning effort during the first 

quarter of 2020. This culminated with a decision to broaden the scope of the organization and a rebranding. By renaming 

the organization from the NEW IT Alliance to the NEW Digital Alliance, the idea was that the scope of the organization 

would be broadened to not just focus on traditional IT roles but to expand to also focus on the digital skills needed to be 

successful in any career. 

4.5.2 Technology Transition - Google Docs to Microsoft SharePoint 

   Early on, the organization had adopted Google’s collaboration tools - Google Docs, Drive, Hangout etc. - to support 

the organization. However, it had become increasingly clear that this choice wasn’t sustainable as the accounts were set 

up as personal Google accounts making it difficult to provide professional branding and strongly separate organizational 

business from personal accounts. In addition, some companies blocked key Google technologies from their networks 

making it difficult to collaborate across companies. The Alliance decided to switch to a comprehensive platform and 

chose Microsoft Teams and SharePoint for collaboration instead. While most of the work to transition to the new platform 

fell to the director and the two interns, the value of the collaborative network established by the organization became 

evident here as well. When the process hit a snag, a local technology training firm and member organization made one 

of their SharePoint trainers available for several hours of consultation to help fix the problem. 

4.5.3 And Then the World Changed 

   Like all organizations, the NEW Digital Alliance was affected by the transition to remote and virtual operations as a 

result of the COVID-19 pandemic that hit in early 2020. This meant that almost all in-person activities and events from 

March through at least the end of the year would be conducted virtually. Because of the increase in maturity along all 

dimensions, the organization was able to transition and continue operating with little disruption. The recently adopted 

collaboration technologies in the form of Microsoft Office 365/SharePoint as well as Zoom allowed for all meetings to 

be transitioned to virtual instead of in person. 

   The NEW Digital Alliance was also well positioned to take advantage of the collaborations and networks previously 

established to set up new related collaborative efforts, such as a survey launched in collaboration with internship 

coordinators at regional colleges (most of whom had not previously collaborated) to examine the impact of the pandemic 

on summer internships for college students. The Alliance also quickly pulled together a broad-based committee to look 

at opportunities for displaced workers to re-skill into IT roles. Both of these efforts show the organization having matured 

and able to play to the strengths it had built up over the previous years in establishing collaborative networks across the 

region. 
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Characteristics Assessment Description 

Goals & 

Objectives 

Adoptive/Adaptive Expanded with the new strategy to also include digital readiness of the 

entire workforce as well as innovation across the region. 

Culture Defined Significant effort required to increase engagement and evangelism on 

behalf of the organization and IT community in the region. 

Process Adoptive/Adaptive Ability to pivot in face of change is a testament to mature processes. 

Technology Adaptive Transition to Office 365, SharePoint, Teams and Zoom. Email addresses 

transitioned to new domain names instead of personal Gmail accounts. 

Governance Adoptive/Adaptive • Working towards 501c.3 status.

• Exploring tiered investment options for various types of

organizations (higher education, not-for-profit, and for-profit).

• The Higher Education Committee works on setting goals and

objectives for the committee that is more independent of the

Alliance with the purpose of making the committee more

valuable to the members from the higher education institutions.

Table 5. Moving to Adaptive Stage (2020) 

4.6 Innovative Outcomes 

   Discrete activities represent the primary measurement of innovation outcomes. These activities originate from both the 

Alliance directly as well as from the overall collaborate network. Activities have been tracked through identification and 

self-reporting since early in 2017. Table 6 provides an overview of activities from 2017 through 2020. Many events in 

2020 were not even scheduled given the COVID-19 restrictions. See Appendix B 2019 Alliance and Network Events for 

the full list of 2019 events. 

20172 2018 2019 2020 Total 

Alliance 4 10 12 16 (3 cancelled)3 42 

Network 16 52 97 40 (2 cancelled) 205 

Total 20 62 109 56 (5 cancelled) 247 

Table 6. Alliance and Network Activities 

   There are several key Alliance events. First, NEW Connect IT represents a yearly conference targeted toward high-

school and college students. This full-day event allows students to learn about technology careers and the educational 

pathways to pursue those careers, meet with higher education institutions, and talk to many area employers. Second, 

quarterly TechTalks bring presentations of the newest technology to colleges and universities in the region. Third, the 

annual Tech Talent Summit provides the state of the Digital ecosystem in Northeast Wisconsin. This event includes data, 

successes, and various panel discussions for all Alliance members and the community at large. Finally, a quarterly CS 

Advisory Board meeting facilitates addressing the IT gaps in high schools through facilitation of advisory boards. All 

current events can be viewed at https://newdigitalalliance.org/events/.  

5. Discussion

   In this case study, we explore our experience working and interacting with the NEW Digital Alliance and the related 

collaborative effort that is evolving across Northeast Wisconsin. Significant effort and resources have been focused on 

building the IT Talent pipeline in the region. As predicted by Schilling (2015), collaborative behavior is induced by a 

2 Calendar starts halfway through the year. 
3 Cancelled events are still listed in the calendar. 
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major technology shock. In Northeast Wisconsin, the trigger event was the robust growth of job demand. That is, the 

common realization that many companies were facing talent shortages. Before this point, each company thought they 

were unique in their difficulties to identify and attract technical talent. As a shared understanding of the problem emerged, 

this talent demand shock led to an informal collaboration network. With the hope of developing innovative outcomes 

relating to talent, a formal alliance was created. This relationship, in light of the original Schilling model, can be seen in 

Figure 8.  

Figure 8: (Top) Original Schilling (2015) model and (Bottom) NEW Digital Alliance Collaboration 

   As noted earlier, the Northeast Wisconsin collaborative network is transitioning from the Adoptive phase into the 

Adaptive phase. Many projects are underway targeting distinct groups. In addition, new opportunities are continually 

identified. These are expected actions of a collaboration network. By moving to a more mature state, the network should 

increase both capabilities and value. Following guidance from the collaboration maturity model, the NEW Digital 

Alliance should recognize the need to mature and articulate strategies in support of culture, process, technology, and 

governance. 

5.1 What are the inflection points that highlight transition from one phase to another phase? 

   In reviewing the previous five years of activities and maturity, several inflections points have been identified that 

signaled a transition in maturity. First, in 2015, an initial meeting occurred with senior IT leaders from across the 

Northeast Wisconsin region. This resulted in the recognition of collaboration potential and opportunities for collaboration 

and began the Exploratory phase of maturity. Second, in 2016, a director was hired. This resulted in the organization 

becoming more defined. The implementation of a strategic plan in 2017 shifted the NEW Digital Alliance and related 

collaboration space into an Adoptive phase. This phase was further enhanced in 2018 with the development of specific 

strategic-related KPIs. In 2019, a strengthened governance framework was established signifying the shift from Adoptive 

to Adaptive maturity.  As can be seen in Figure 4, these inflection points tended to occur at the beginning of the move 

towards a new level of maturity and we contend that the inflection points were major drivers towards achieving the next 

level of maturity. 
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COVID-19 and the resulting economic and health uncertainty represent a new shock of the collaboration ecosystem of 

Northeast Wisconsin. The impact on the current alliance is unknown. Initially, IT-related hiring remains strong and 

sponsoring companies remain involved and committed to collaboration. However, it is unclear if companies will continue 

to be able to commit financially to the effort during the downturn in the economy. It is also unclear what grant 

opportunities may be available and whether the NEW Digital Alliance will be able to access them to help establish re-

skilling efforts as we transition out of the pandemic. 

5.2 How does maturity of the Alliance contribute to the maturity of the collaboration network? 

   While serving as the central point for collaboration and event organization, the ongoing focus on goals and objectives, 

culture, process, technology, and governance by the NEW Digital Alliance positively impacted the related collaboration 

network. Ongoing strategy and KPI development were driven by a board representing regional companies, economic 

development organizations, and higher education institutions. These representatives have a vested interest in the 

collaboration network remaining viable and impactful. Their involvement also helped ensure alignment between the 

activities and actions of both the Alliance and their respective organizations. Similarly, technology maturation facilitated 

greater collaboration. Finally, committees and subcommittees set goals and objectives in alignment with the regional 

strategies directed by the Alliance.  

5.3 In what ways are innovative outcomes impacted by maturing collaborative alliances and networks? 

   Innovative outcomes are difficult to measure. While traditional metrics such as the number of companies involved in 

the NEW Digital Alliance, number of events, number of attendees, or job postings can offer insight into results of the 

Alliance and the collaborative network, they do not specifically represent innovative outcomes. As an example, a single 

job opening that is filled may or may not have resulted from the work and effort of the Alliance and related collaboration 

network. Anecdotally, companies will continue supporting the Alliance and partaking in the collaboration network if 

they feel they receive value for the time and money they are spending. This culture of loose affiliation has allowed the 

collaboration to take hold and grow but may also represent a barrier to future maturity. This culture also impedes formal 

tracking of innovative outcomes. This lack of measurable outcomes represents a challenge to the Alliance. 

6. Conclusion

   Given the tremendous impact of COVID-19 on our workplace, educational institutions, and society at large, 

understanding collaboration, collaboration networks, and innovative outcomes is critical. This timely study explores the 

formation and maturity of an alliance and related collaboration networks and the impact on innovative outcomes to solve 

real challenges and problems. Combining the concepts of collaboration networks and collaboration maturity, we present 

a first attempt at a new comprehensive framework that may help understand and direct new regional collaborative efforts. 

Further research will be needed to fully realize this framework and explore its applicability to different regional settings. 

   There are two key limitations to this study. First, this paper only explores a single collaboration network in a single 

geographic region. It would be beneficial to explore additional networks in the same geographic area or similar types of 

network in different geographical areas to increase generalizability. Second, this study is based on personal experiences 

and knowledge of the authors. Wider interviews and surveys could yield richer results and greater insight into decisions 

throughout the maturation of the NEW Digital Alliance and the associated collaboration network. 

   There are several paths for future research. First, issues of diversity (gender, racial etc.), have not been addressed in 

this research. As an innovative outcome to solve the talent shortage, research into how the Alliance and related network 

can target a more diverse base of participants in the technology community would be warranted. Efforts are under way 

to collect more data on diversity of IT students and the IT workforce in the region. Second, this study occurred mostly 

during periods of strong economic growth (2015-2020). Different economic conditions are likely to cause alliance and 

network developments to proceed differently. Finally, understanding the impact of working “safely from home” on 

collaboration alliances and networks could be explored. While the pandemic will pass, the long-term impacts may involve 

continued remote working for employees and members of organizations.  

   By identifying key inflection points, maturation relationship between a formal alliance and collaboration network, and 

impact on innovative outcomes, we hope to provide guidance to those struggling to solve new challenges. The value of 

collaboration can result in positive and innovative outcomes. This is required now more than ever. 
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Appendix A: Collaboration Network 

Organization Collaborative Role 

Amplify Oshkosh Local organization started by the Oshkosh Chamber of Commerce to promote the 

confluence and capabilities of technology in Oshkosh. 

Central Wisconsin IT Alliance 

(CWITA) 

Group of action focused employers in central Wisconsin working together to enhance 

the image of IT careers and position the region as a hub for IT opportunities. 

Chambers of Commerce Advocates of the local business and industry community, many of whom have a focus 

on workforce development. 

Code.org National nonprofit dedicated to expanding access to computer science in schools and 

increasing participation by women and underrepresented minorities. 

Cooperative Education Service 

Agency (CESA) 

Serve educational needs in all areas of Wisconsin by serving as a link between school 

districts, and between school districts and the state.  

Department of Public 

Instruction (DPI) 

State organization that sets standards for public schools in Wisconsin. 

Department of Workforce 

Development (DWD) 

State organization, developing youth and adult apprenticeships in IT 

Employers Organization with IT talent needs, many of whom are engaging with and providing 

financial support for one or more non-profit organizations within the collaboration 

network. 

Microsoft Microsoft’s TechSpark is focused on regional internet connectivity, digital skills 

development, career skills development, nonprofit support and digital business 

transformation.  

NEW Digital Alliance Regional non-profit, funded by local employers, to help attract, develop & retain 

diverse IT talent in Northeastern Wisconsin to support economic growth.  

NEW Manufacturing Alliance Group of manufacturers, educators, workforce development, chambers of commerce 

and state organizations working to promote manufacturing in the Northeast WI 

region.  

New North Regional marketing and economic development organization representing the 18 

counties of Northeast Wisconsin. 

Northeast Wisconsin Education 

Alliance (NEW ERA) 

Alliance that fosters regional collaboration among public colleges and universities in 

Northeast Wisconsin. 

School Districts Many of the school districts across the region were represented. 

TEALS National non-profit whose mission is to get computer science in every high school, 

with a focus on AP level CS classes. 

Women in Technology (WIT) 

Wisconsin 

Regional non-profit focused on initiatives designed to attract, grow and retain women 

and girls in technology related careers. 
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Appendix B: 2019 Alliance and Network Events 

January 2019 

Jan 17 Business Intelligence Best Practices  

Jan 24 NEW CS Advisory Board  

Jan 24 Ideas Amplified: Exploring the World of Virtual Reality & Augmented Reality 

February 2019 

Feb 05 Salesforce Technology: Wisconsin Non-Profit Group (Appleton) Kickoff Meeting  

Feb 07 Counselors for Computing: Professional Development in Emerging Careers  

Feb 21 CS Fundamentals Workshop  

Feb 21 LinkedIn Best Practices  

Feb 21 Amplify Member Mixer  

Feb 21 Fox Valley Business Intelligence and Analytics Meetup  

Feb 22 WIT@Work Breakfast Series - How to Leverage Social Media for Talent Acquisition and Talent Retention 

Feb 28 Foxconn R&D center in Green Bay topic of Tech Council network luncheon on Feb. 28 

March 2019 

Mar 05 EDCi Taste of Technology  

Mar 12 NEW CS Advisory Board  

Mar 12 Salesforce Nonprofit User Group Meeting  

Mar 12 WIT Networking and Social Event  

Mar 14 Fox Valley Business Intelligence and Analytics Meetup 

Mar 18 Wisconsin Tech Summit 2019 

Mar 19 Virtual/Augmented Reality: Business Applications  

Mar 20 Ideas Amplified: The Ins & Outs of E-Recycling  

Mar 28 LinkedIn Best Practices 

April 2019 

Apr 02 Fox Valley Business Intelligence and Analytics Meetup  

Apr 07 Hack Appleton  

Apr 09 Salesforce for Nonprofits User Group - Problem-Solving Workshop  

Apr 23 Building Blocks to a Highly Optimized Website  

Apr 23 Building Blocks of Stellar Digital Marketing  

Apr 25 Amplify Oshkosh- What is Blockchain and How Does it Work?  

Apr 26 WIT@Work Breakfast Series - How to Stay Current With The Latest Technology 

Apr 26 Innovation Challenge on the Aging Community  

Apr 27 Innovation Challenge on the Aging Community  

Apr 30 TechTalk 2019 @ Moraine Park Technical College 

May 2019 

May 09 Fox Valley Business Intelligence and Analytics  

May 14 Building Blocks to a Highly Optimized Website  

May 17 WIT@Work Breakfast Series - Learn how to persuade, inform and plan through enhanced communications 

May 21 Midwest Association for Information Systems 14th Annual Conference (MWAIS 2019)  

May 23 WIT4Girls Community Info Event  

May 30 A Beginner's Guide to Salesforce Trailhead, In Action! 

June 2019 

Jun 08 Headway Open House Happy Hour  

Jun 09 Robotics & STEM Camp: Session 1  

Jun 11 Building Blocks to Stellar Digital Marketing  

Jun 13 2019 Digital Learning Opportunities in NEW  

Jun 13 6 Tips for Increasing and Managing Leads  

Jun 13 Salesforce for Non-profits Group – Reports & Dashboards Workshop and Problem Solving 

Jun 13 Fox Valley Business Intelligence and Analytics  
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Jun 16 Robotics & STEM Camp: Session 2  

Jun 17 FVTC Technology Camp  

Jun 17 Tech Titans Mobile App Academy  

Jun 18 First Meeting of the Green Bay "Titletown" PUG  

Jun 19 Microsoft Dynamics 365/CRM User Group - Security  

Jun 19 Amplify Celebration Event  

Jun 23 Video Game Programming Camp: Level 1 (Session 1)  

Jun 24 FVTC Technology Camp  

Jun 25 CRM A-Z: From Selection and Implementation to User Adoption and ROI 

July 2019 

Jul 07 Video Game Programming Camp: Level 1 (Session 2)  

Jul 11 WIT Annual Meeting  

Jul 15 FVTC GirlTech Summer Camp  

Jul 16 Ryan Tischer - Strategic Cloud Engineer at Google  

Jul 18 Fox Valley Business Intelligence and Analytics  

Jul 21 Video Game Programming Camp: Level 2  

Jul 23 Northeast Wisconsin Collaborative Intern Event - Members Only! 

Jul 23 How to Do Customer Interviews & Gain Valuable Insights  

Jul 30 IT Career Pathways Discussion 

Jul 30 Code.org CS Fundamentals Intro Workshop  

Jul 31 Code.org CS Fundamentals Deep Dive Workshop 

August 2019  

Aug 05 2019 NSA/NSF GenCyber Teacher Camp  

Aug 06 THAT Conference  

Aug 08 Amplify Member Mixer  

Aug 12 Startup WI Week Happy Hour - Green Bay Community Partnership  

Aug 21 Tech and Tailwinds  

Aug 22 Advancing Cybersecurity in the Industry, Energy, Water Nexus  

Aug 22 Fox Valley BI & Analytics - Google Cloud Platform’s Big Query and BI & Analytics 

Aug 24 2019 UWGB Cyber Teacher/Educator Workshop  

Aug 27 IT Career Pathways Discussion 

September 2019 

Sep 09 The Story of Starting a Cryptocurrency Exchange  

Sep 12 Fox Valley BI & Analytics - Data Visualization Best Practices Part II  

Sep 17 Challenges and Opportunities: The Future of the Internet of Things in Wisconsin and the Midwest  

Sep 17 NEW AITP - Navigating Shift Creek: A Guide to Career Transition in Today's Business World  

Sep 17 ReactJS: Managing State with Hooks & Context  

Sep 18 Microsoft Dynamics 365/CRM User Group: Sept. 2019 – Training Topic SharePoint and OneNote Integrations 

Sep 18 RAMS - Documentary Screening to Benefit the Boys & Girls Club Arts Initiative  

Sep 19 Titletown HDI September Meeting - Cloud/Cyber Security  

Sep 19 Ideas Amplified: Data Ethics  

Sep 26 Code.org CS Fundamentals Intro Workshop  

Sep 26 TechTalent Summit - Members Only!  

Sep 27 WIT @ Work Breakfast Series - Feel to Heal: The Truth about Health and Happiness – September 

October 2019  

Oct 04 Great Lakes Analytics Conference  

Oct 09 IT Leadership Academy: Critical IT Communication Skills  

Oct 10 Pulp, paper and packaging: Future of industry topic of Oct. 10 Tech Council luncheon in Appleton  

Oct 10 Pulp, paper and packaging: Future of Industry  

Oct 10 Fox Valley BI & Analytics - Panel Discussion "How are you Managing Self Service BI and Analytics?" 

Oct 15 NEW CS Advisory Board: IT Career Pathways  

Oct 15 NEW AITP – Design Thinking: From Theory to Application  

Oct 18 Code.org CS Fundamentals Deep Dive Workshop  
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Oct 22 React.js 101 - Build Your First React App! (Beginners)  

Oct 25 WIT @ Work Breakfast Series October - Intelligent Automation -- Successes through Automation 

Oct 29 Envision 2019 

November 2019 

Nov 04 Meet the Meetups  

Nov 04 Meet the Meetups  

Nov 06 NEW IT Alliance TechTalk 2019 @ UW Oshkosh  

Nov 08 Startup Wisconsin Week  

Nov 14 Fox Valley BI & Analytics - Building a Data Insights Practice or Center of Excellence  

Nov 15 Ethical IT Conference  

Nov 19 NEW AITP presents Brent Walkow, Comedian/Entertainer  

Nov 21 NEW Connect IT Job and Career Fair  

Nov 22 WIT @ Work Breakfast Series - Productivity Beyond the Information Age – November 

December 2019 

Dec 03 UX Design and Development Education - Community Discussion  

Dec 07 Northeast Wisconsin Code Camp 2019  

Dec 11 Microsoft Girls Workshop: FVTC Hour of Code  

Dec 12 Holiday Member Mixer - Amplify Oshkosh  

Dec 12 Fox Valley BI & Analytics - End of Year "All Things Data" Networking Event 

Dec 16 Digital Fertilize Presents: 2019 Year-End Celebration 
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1. Introduction

     The popularity of wearable technology has increased over the recent years (Iqbal et al. 2018). Applications such as 

self-management aimed at managing disease condition, and self-care for facilitating health and wellbeing have adopted 

wearable technology to improve health and wellbeing for users. Most of these wearable devices contains sensors such as 

accelerometers, gyroscopes, magnetometers, heart rate sensors and similar sensors embedded for successful human 

activity recognition (HAR). The availability of data coupled with the wide ranging applications of HAR resulted in HAR 

garnering significant attention in academia and in practice (Qin et al. 2020).  

     In that regard, machine learning and data mining techniques have proved beneficial in extracting features and 

classifying HAR data (Ramasamy Ramamurthy and Roy 2018). Most of the HAR applications in the market today are 

striving to improve their performance by utilizing ML techniques and have demonstrated success in terms of performance 

metrics such as classification accuracy and processing speed (Meyer et al. 2016). Further, HAR data are often 

characterized by a number of attributes, such as activity type, sensor type, preprocessing steps, and position of sensor on 

a specific body area. Such diverse characteristics makes HAR particularly challenging and is a persistent driver for 

ongoing research. Specifically, prior research has mainly focused on developing and improving novel ML models for a 

number of activities in unique environments and populations (Wang et al. 2019), e.g., elderly individuals in a home care 

environment (Chen et al. 2017). Further, most of HAR literature is concentrated around improving the HAR performance 

by considering a single dataset and a specific ML classification technique which limits the generalizability of the findings 

(Baldominos et al. 2019; Nabian 2017). Although some attempts have been made to compare various ML techniques on 

multiple HAR datasets (Dohnálek et al. 2014; Li et al. 2018), their focus is often limited to either improving feature 

learning or finding optimal techniques with the best tradeoff between speed and accuracy rather than a comprehensive 

approach that could be employed to understand the performance of ML techniques and map them to the characteristics 

of various HAR data sets. 

     Accordingly, this research study aims to analyze the performance of different ML classification techniques using 

various HAR datasets. As HAR sensor data sets can vary significantly with respect  characteristics such as sampling 

frequency, type of activities performed, number of sensors, sensor types and sensor positions, these variations in 

characteristics have been demonstrated to impact ML techniques hyper parameter tuning, classification performance, 

and run time. (Baldominos et al. 2019; Dohnálek et al. 2014; Nabian 2017; Wang et al. 2019). This research extends the 

understanding of the performance of ML classification techniques on HAR data. The significance of this research is both 

theoretical and practical. From a theoretical point of view, this research helps to understand the merits and shortcomings 

of ML techniques that could help future researchers figure out how to improve the ML classification techniques for HAR 

datasets. From a practical point of view, this research helps in guiding the applicability of different ML classification 

techniques to HAR datasets. Altogether, the research on HAR performance improvement can remarkably facilitate self-

management and self-care interventions. In addition, these improvements extend beyond the medical and healthcare 

domains to other context, wherever the detection of human activity is vital. 

     The remainder of the paper is organized as follows: a brief literature review is presented in section 2, while section 3 

describes the methodology including the characteristics of the dataset and the details of the analysis process. Section 4 

illustrates the results obtained from the analysis and section 5 summarizes and discusses the results by comparing with 

extant literature. Finally, section 6 concludes by summarizing the key contributions, limitations, and suggests directions 

for future research. 

2. Literature Review

2.1 Human Activity Recognition 

     Raw data obtained from the wearable sensors undergo a number of steps as demonstrated by the Activity Recognition 

Chain (ARC) model (Bulling et al. 2014) for classifying human activities as shown in Figure 1. In this model, the first 

step involves sampling the raw data obtained from different sensors with multiple dimensions, before it undergoes 

preprocessing, segmentation, feature extraction, and finally, classification. Among these steps, feature extraction requires 

deep domain expertise in the field. Therefore, researchers tend to depend on domain experts for feature engineering and 

extraction. Utilizing the resultant engineered features with ML and deep learning techniques, the activities are classified 

into specific human activities (Saha et al. 2018).  
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Figure 1: Activity Recognition Chain (ARC) Model (Bulling et al. 2014) 

     HAR research focuses predominantly on classifying human activities using ML techniques or/and preprocessing the 

data (Baldominos et al. 2019; Jain and Kanhangad 2018; Nabian 2017; Ronao and Cho 2017; Sousa et al. 2017). HAR 

using smartphones is a popular sub-field where there is abundant of literature that deals with improving HAR 

classification using various innovative pre-processing and ML techniques (Anguita et al. 2013; Jain and Kanhangad 

2018; Micucci et al. 2017; Nakano and Chakraborty 2017; Ronao and Cho 2014, 2017). Few studies tried to improve the 

HAR classification obtained from inertial sensors using hyper parameter tuning of ML techniques (Gaikwad et al. 2019; 

Garcia-Ceja and Brena 2015; Seto et al. 2015). Others have also focused on the problems and difficulties associated to 

segmentation and proposed solutions to tackle these problems (Kozina et al. 2011; Oresti Banos 12:19:30 UTC). These 

studies have shown a partial effect of segmentation on the performance of ML techniques. Similarly, few studies 

demonstrated that the window size affects the HAR classification, e.g., 1-2 second interval results in optimal tradeoff 

between accuracy and recognition speed (Banos et al. 2014; Ni et al. 2016). 

2.2 Comparative analysis 

     Most of the HAR literature is concentrated around improving the performance HAR using a single dataset and a 

specific ML technique which limits the generalizability of the findings. There are some studies that tried to consider 

various ML techniques (Akhavian and Behzadan 2016). These types of analyses compare various ML techniques to 

identify the most suitable technique for a HAR dataset (Baldominos et al. 2019; Nabian 2017). These studies used a 

single dataset to understand the relation between few HAR characteristics such as sensor position, type of activity and 

hyper parameter tuning on ML performance. Recent studies on HAR has shown evidence that no prior preprocessing of 

raw sensor data has shown reasonable ML performance especially in a comparative study (Dohnálek et al. 2014). 

Although some attempts have been made to compare various ML techniques on multiple HAR datasets (Dohnálek et al. 

2014; Li et al. 2018), their focus is often limited to either improving feature learning methods or finding optimal 

techniques with the best tradeoff between speed and accuracy. Accordingly, there is a need for a comprehensive study 

to evaluate and benchmark the performance of various ML techniques with different HAR datasets and map the 

characteristics of various HAR datasets to appropriate ML techniques. Prior work on HAR data partly tried to address 

this gap by comparing multiple HAR datasets with the accuracy score of different ML techniques (Ambati and El-Gayar 

2020). We aim to extend this work by collectively considering multiple HAR datasets, the type of activities being 

classified, the performance of an expanded portfolio of ML techniques, and the use of an expanded set of performance 

metrics to get more insights in understanding the ML techniques and their relation to HAR data in conjunction with the 

extant literature. These insights can help future researchers in designing a robust and comprehensive framework/model 

depending on the HAR application. 

3. Methodology

3.1 Datasets 

     We used three HAR datasets in a manner that captures the diversity of characteristics commonly present in various 

datasets. The first two datasets (Pampa2 and mHealth) are from the University of California, Irvine (UCI) data repository. 
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The datasets were chosen in such a way that they are distinct in terms of sensors utilized, sampling frequency, activity 

environment and similar attributes, and are utilized in prior research (Anguita et al. 2013; Gaikwad et al. 2019; Garcia-

Ceja and Brena 2015; Nakano and Chakraborty 2017). This makes these datasets unique and appropriate for utilizing 

them to benchmark various ML techniques. The third dataset is selected from the SWELL project supported by the Dutch 

national program COMMIT (Shoaib et al. 2014). Table 1 presents the data sets and their characteristics. 3D 

accelerometers, 3D gyroscope, and 3D magnetometer are the common sensors employed in all the three datasets. These 

sensors have become a basic functionality for wearable devices that attempt to recognize human activity. 3D 

accelerometer helps in recognizing the speed with which the user is moving in all three dimensions, 3D magnetometer 

helps in recognizing the orientation of the user with respect to earth’s magnetic north, and 3D gyroscope helps in 

recognizing the angular velocity of the user. Other than these three sensors, each dataset has some unique sensors when 

compared to each other. For example, Pamap2 dataset has a heart rate monitor and a temperature sensor, while mHealth 

has an ECG sensor and SWELL has a linear acceleration sensor. With respect to data collection, Pamap2 relies on 

wireless IMU’s, while mHealth uses wearables, and SWELL uses smartphones to collect the data. All activities in a 

particular dataset are conducted for approximately the same amount of time and are represented evenly in the data sets. 

Therefore, data imbalance does not constitute an issue. When data size is considered, Pampap2 dataset is the largest 

dataset with a 519,185-record size, while SWELL stands second with a 189,000-record size, and MHealth being the 

smallest with 102,959 record size. 

Dataset Sensors Sensor 

Position 

Activities performed Dataset description Sampling 

Frequency 
Pamap2 3 Colibri wireless IMUs 

(inertial measurement units) 

and BM-CS5SR (HR 
monitor) – Accelerometer, 

Gyroscope, magnetic sensor 

and temperature sensor. 

wrist, chest 

and side 

ankle. 

lying, sitting, standing, walking, 

running, cycling, Nordic walking, 

watching TV, computer work, car 
driving, ascending stairs, descending 

stairs, vacuum cleaning, ironing, 

folding laundry, house cleaning, 
playing soccer and rope jumping. 

9 subjects (1 female and 8 

male) aged 27.22 (+-) 3.31 

years performed the 12 
mandatory activities and 6 

optional activities for 2-3 

minutes. 

100 

samples/sec 

Mhealth accelerometer, a gyroscope, 

a magnetometer and ECG 
(Shimmer2 [BUR10] 

wearable sensors). 

chest, right 

wrist and 
left ankle 

L1: Standing still (1 min), L2: Sitting 

and relaxing (1 min), L3: Lying down 
(1 min), L4: Walking (1 min), L5: 

Climbing stairs (1 min), L6: Waist 

bends forward (20x), L7: Frontal 
elevation of arms (20x), L8: Knees 

bending (crouching) (20x), L9: 

Cycling (1 min), L10: Jogging (1 min), 
L11: Running (1 min), L12: Jump 

front & back (20x) 

10 volunteers of diverse 

profile performed 12 
physical activities for about 

1 min 

50 

samples/sec 

SWELL accelerometer, a gyroscope, 
a magnetometer, and a 

linear acceleration sensor 

(Samsung Galaxy SII 
(i9100) smartphone). 

upper arm, 
wrist, two 

pockets, 

and belt 
position 

walking, sitting, standing, jogging, 
biking, walking upstairs and walking 

downstairs 

10 participants performed 7 
activities for 3-4 minutes. 

All are male with ages 25-

30. 

50 
samples/sec 

Table 1. Dataset Characteristics 

3.2 Analysis 

     We compared different ML techniques using a number of HAR datasets (Pamap2, mHealth and SWELL) across 

various ML performance metrics. The ML techniques are Naïve Bayes, Support Vector Machine (SVM) with linear 

kernel, K-Nearest Neighbor (KNN), Logistic Regression, Stochastic Gradient Descent (SGD), Decision Tree, Decision 

Tree with entropy, Random Forest, Gradient Boosting Decision Tree (XGBoost), and NGBoost algorithm. Although, 

deep learning techniques such as neural network based algorithms are attracting popularity over the recent years, they 

tend to over fit  in the case of HAR data (Jobanputra et al. 2019). Moreover, the runtime of each dataset over various ML 

techniques is already high when run on Python Jupyter Notebook using eight-generation intel i7 processor considering 

the data is not extensively preprocessed, therefore, applying neural network-based techniques on these large HAR 

datasets would significantly increase runtime. Considering these circumstances, neural network techniques are not 

implemented in this research. Although accuracy is the most popular ML performance metric in HAR (Li et al. 2018), 

we utilized additional metrics such as precision, recall, F1 score, support and runtime to facilitate an in-depth analysis. 

Table 2 shows the description of ML metrics employed for evaluating the ML performance. 

     All the three datasets are minimally preprocessed by addressing the missing values and excluding the data during the 

transient stage (transition from one activity to another) based on timestamp and standardizing the format of the data such 
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that it would be easier to implement the ML techniques and interpret the results obtained from the analysis. Specifically, 

the data is standardized in a manner such that each row represents the sample values for each sensor for a specific 

sampling time, and each column represents a sensor except for timestamp, subject ID, and classification activity. After 

standardizing the format of each dataset with minimal preprocessing, we split the data into training (70%) and test data 

(30%) for each dataset. Once all the datasets are split into training and test data, we train (including hyperparameters 

tuning) of the various ML techniques using each of the datasets. Then, we evaluate each ML technique with the 

considered performance metrics on each dataset. 

ML 

Metrics 

Accuracy Precision Recall F1 score Predicting Run 

Time 
Definition The ratio of number of 

correct predictions to the 

total number of predictions. 

The ratio of number of 

correctly predicted 

positive values to the total 
predicted positive values. 

The ratio of correctly 

predicted positive values 

to the total number of 
positive values. 

Harmonic mean of 

precision and recall. 

Time taken for target 

classification using test 

data. 

Formula (TP+TN)/(TP+TN+FP+FN) TP/(TP+FP) TP/(TP+FN) 2*(Precision*Recall)/

(Precision+Recall) 

- 

Table 2. Description of ML metrics 

Where: 

• True Positive (TP) - Number of correctly predicted positive values.

• True Negative (TN) - Number of correctly predicted negative values.

• False Positive (FP) – Number of predictions that interpret negative values as positive values.

• False Negative (FN) – Number of predictions that interpret positive values as negatives.

     To investigate the potential tradeoff between classification performance and prediction runtime, we identify the Pareto 

efficient ML techniques for each of the datasets. Pareto efficiency is a concept where no individual criterion can be 

declared better without a sacrifice in one of the other criterion (Bokrantz and Fredriksson 2017). Accuracy is used as the 

metric representing classification performance, while prediction run time is measured in seconds.  

3.2.1 Classification performance by activity 

     To get a better understanding of the performance of the various ML techniques using the various datasets, we 

considered three cases as follows. 

     Individual activities: In this case, the target variable is represented as a categorical variable where each category 

representing one activity such as sitting, standing, running, and lying for each dataset. This type of grouping is very 

popular in comparative analysis for understanding each activity and the respective effect of ML technique. It provides 

for the most fidelity as all activities are accounted for. However, it allows for the number of activities (classes) to vary 

among the three datasets which may compound the comparative analysis of the performance of various ML techniques. 

     Grouped activities: To address the aforementioned issue and considering that differentiating between sitting and 

standing, and between walking fast and running, and similar differentiation can be very difficult to obtain (Gjoreski et 

al. 2014), we conducted another set of experiments where all the activities in each dataset are divided into two categories 

namely locomotive activities and stationary activities. Activities where the user is staying idle with no physical 

movement such as sitting, standing, and lying are considered stationary activities. All other activities which require the 

user to perform a physical movement such as, but not limited to walking, running, jumping, climbing stairs and similar 

activities are categorized as locomotive activities. It is assumed that since all the locomotive activities share a similarity 

that the sensor movement is dynamic and similarly, stationary activities share a similarity that all the sensor movement 

would be idle, it should alleviate the problem of differentiating similar activities. This categorization should guide us 

towards understanding more towards the type of activity and how it is going to affect the ML techniques and their 

performance, respectively.  

     Common activities: Another possibility for standardizing the activities across datasets while maintaining as much 

fidelity as possible (in terms of the number of activities/classes) considered, we conducted an additional experiment 

where we included the activities that are common in all three datasets. The common activities in all the datasets are 

walking, sitting, standing, running, cycling, and climbing stairs. 
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4. Results

4.1 Classification of individual activities 

     Table 3 depicts the performance of the various ML techniques on the three data sets. With respect to accuracy, the 

performance of ML techniques irrespective of the datasets in the order of best performance are XGboost, Random Forest, 

KNN, SVM, Decision Tree with entropy, Decision Tree, NGBoost, Logistic Regression, Naïve Bayes, and SGD. There 

are three exceptions to this observation, Naïve Bayes technique performed better in the case of SWELL when compared 

to Logistic Regression, SGD performed better in the case of Mhealth when compared to Naïve Bayes technique, and 

Random Forest, KNN, and SVM performed better than XGboost in the case of mHealth. 

     With respect to precision, recall, and F1 Score, the performance of ML techniques irrespective of the datasets in the 

order of best performance are KNN, SVM, Random Forest, XGboost, Decision Tree with entropy, Decision Tree, 

Logistic Regression, Naïve Bayes, and SGD. There are two exceptions to this observation, Naïve Bayes technique 

performed better than Logistic Regression in the case of SWELL and SGD performed better than Naïve Bayes in the 

case of the mHealth dataset. 

     The performance of ML techniques irrespective of the datasets in the order of least runtime, Logistic Regression, 

SGD, Decision Tree with entropy, Decision Tree, Random Forest, Naïve Bayes, XGboost, SVM, and KNN. There is one 

exception to this observation, XGboost has lower run-time when compared to Naïve Bayes in the case of Pamap2 dataset. 

Naïve 

Bayes 

SVM KNN SGD Logistic 

Reg. 

DT DT with 

Entropy 

RF XGBoost NGBoost 

Accuracy Pamap2 0.901 0.999 0.999 0.9 0.92 0.999 0.999 0.999 0.999 0.936 

SWELL 0.879 0.996 0.998 0.847 0.855 0.975 0.977 0.995 0.999 0.881 

MHealth 0.521 0.965 0.991 0.629 0.738 0.911 0.918 0.939 0.934 0.875 

Precision Pamap2 0.91 1 1 0.9 0.92 1 1 1 1 0.93 

SWELL 0.88 1 1 0.85 0.85 0.98 0.98 1 1 0.88 

MHealth 0.52 0.97 0.99 0.63 0.72 0.91 0.92 0.94 0.94 0.87 

Recall Pamap2 0.90 1 1 0.9 0.92 1 1 1 1 0.93 

SWELL 0.88 1 1 0.85 0.86 0.98 0.98 1 1 0.87 

MHealth 0.52 0.97 0.99 0.63 0.74 0.91 0.92 0.94 0.93 0.87 

F1 Score Pamap2 0.90 1 1 0.9 0.92 1 1 1 1 0.93 

SWELL 0.88 1 1 0.85 0.85 0.98 0.98 1 1 0.88 

MHealth 0.55 0.97 0.99 0.62 0.65 0.91 0.92 0.94 0.93 0.87 

Predicting 

Run-Time 
(s) 

Pamap2 7.281 639.2 12,860 0.145 0.15 0.182 0.149 1.518 6.923 401.765 

SWELL 1.026 303.271 6,527 0.062 0.046 0.087 0.072 0.599 2.638 281.942 

MHealth 0.398 232.583 488.51 0.021 0.02 0.03 0.024 0.262 2.625 122.888 

Table 3. Performance metrics of ML techniques for individual activities 

4.2 Classification of grouped activities 

As shown in Table 4, all ML techniques performs better using the Pamap2 dataset on all performance metrics except the 

runtime when compared to the other two datasets. When we consider accuracy, precision, recall and F1 score, the general 

trend that is followed by the ML techniques irrespective of the datasets is, Logistic Regression, SGD, Naïve Bayes, 

NGBoost Decision Tree, Decision Tree with entropy, SVM, KNN, Random Forest, and XGboost. There is one exception 

where Logistic Regression performed better than Naïve Bayes in the case of Pampap2 dataset. 

     When prediction run-time is considered, the general trend followed by the ML techniques irrespective of the dataset 

in the order of the shortest to longest runtime is Logistic Regression, SGD, Decision Tree with entropy, Decision Tree, 

Random Forest, Naïve Bayes, XGboost, SVM, NGBoost, and KNN. As expected, (with only two classes), the 

performance metrics of ML techniques for grouped activities is better when compared to the individual activities. 



Journal of the Midwest Association for Information Systems | Vol. 2021, Issue 1, January 2021   55 

Ambati, El-Gayar / ML Comparison for HAR 

Naïve 

Bayes 

SVM KNN SGD Logistic 

Reg. 

DT DT with 

Entropy 

RF XGBoost NGBoost 

Accuracy Pamap2 0.966 1 0.999 0.999 0.999 1 1 1 1 1 

SWELL 0.99 0.999 0.999 0.97 0.97 0.998 0.998 0.999 0.999 0.998 

MHealth 0.989 0.991 0.999 0.834 0.814 0.998 0.998 0.999 0.999 0.996 

Precision Pamap2 0.97 1 1 1 1 1 1 1 1 1 

SWELL 0.99 1 1 0.97 0.97 1 1 1 1 0.99 

MHealth 0.99 0.99 1 0.83 0.80 1 1 1 1 0.99 

Recall Pamap2 0.97 1 1 1 1 1 1 1 1 1 

SWELL 0.99 1 1 0.97 0.97 1 1 1 1 0.99 

MHealth 0.99 0.99 1 0.83 0.81 1 1 1 1 0.99 

F1 Score Pamap2 0.97 1 1 1 1 1 1 1 1 1 

SWELL 0.99 1 1 0.97 0.97 1 1 1 1 0.99 

MHealth 0.99 0.99 1 0.82 0.80 1 1 1 1 0.99 

Predicting 

Run-Time 

(s) 

Pamap2 0.712 21.831 12965 0.09 0.053 0.102 0.108 0.596 1.058 118.688 

SWELL 0.343 11.216 6505.1

6 

0.025 0.029 0.048 0.044 0.265 0.57 46.751 

MHealth 0.069 52.799 486.39
7 

0.006 0.008 0.014 0.012 0.109 0.217 10.065 

Table 4. Performance metrics of ML techniques for grouped activities 

4.3 Classification of common activities 

     As shown in Table 5, all ML techniques perform better using the Pamap2 dataset on all performance metrics except 

the runtime when compared to the other two datasets. When we consider accuracy, precision, recall and F1 score, the 

general trend that is followed by the ML techniques irrespective of the datasets is, SGD, Logistic Regression, Naïve 

Bayes, NGBoost Decision Tree, Decision Tree with entropy, SVM, KNN, Random Forest, and XGboost. There is one 

exception where Logistic Regression performed better than Naïve Bayes in the case of Pampap2 dataset. 

     When prediction run-time is considered, the general trend followed by the ML techniques irrespective of the dataset 

in the order of the shortest-longest runtime is Logistic Regression, SGD, Decision Tree with entropy, Decision Tree, 

Random Forest, Naïve Bayes, XGboost, SVM, NGBoost, and KNN. The performance metrics of ML techniques for 

common activities are better when compared to the individual activities and slightly lower when compared with the 

grouped activities. 

Naïve 

Bayes 

SVM KNN SGD Logistic 

Reg. 

DT DT with 

Entropy 

RF XGBoost NGBoost 

Accuracy Pamap2 0.945 0.999 0.999 0.984 0.987 0.999 0.999 1 1 0.999 

SWELL 0.939 0.998 0.999 0.924 0.931 0.991 0.993 0.998 0.999 0.964 

MHealth 0.931 0.99 0.998 0.789 0.829 0.988 0.99 0.999 0.999 0.959 

Precision Pamap2 0.95 1 1 0.98 0.98 1 1 1 1 0.99 

SWELL 0.94 1 1 0.92 0.93 0.99 0.99 1 1 0.96 

MHealth 0.93 0.99 1 0.78 0.82 0.99 0.99 1 1 0.95 

Recall Pamap2 0.95 1 1 0.98 0.99 1 1 1 1 0.99 

SWELL 0.94 1 1 0.92 0.93 0.99 0.99 1 1 0.96 

MHealth 0.93 0.99 1 0.79 0.83 0.99 0.99 1 1 0.95 

F1 Score Pamap2 0.95 1 1 0.98 0.98 1 1 1 1 0.99 

SWELL 0.94 1 1 0.92 0.93 0.99 0.99 1 1 0.96 

MHealth 0.93 0.99 1 0.78 0.82 0.99 0.99 1 1 0.95 

Predicting 

Run-Time 

(s) 

Pamap2 1.374 50.455 3603.94

3 

0.076 0.074 0.082 0.078 0.661 1.987 305.698 

SWELL 0.959 120.28 4645.31
6 

0.05 0.046 0.077 0.066 0.514 2.221 203.605 

MHealth 0.121 31.922 152.443 0.01 0.008 0.013 0.013 0.109 0.557 28.638 

Table 5. Performance metrics of ML techniques for common activities 
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5. Discussion

     When Pamap2 dataset is employed, all the ML techniques performed to their best for all possible groupings of 

activities. The relatively large size of the data resulting from the higher sampling frequency, and the additional sensors 

(temperature sensor and heart rate monitor) utilized in the dataset, positively affected ML performance. This leads us to 

conclude that the overall improvement of ML performance metrics tends to be associated with the number of sensors and 

higher sampling rate employed to collect the HAR data. Generally, tree-based algorithms such as Random Forest, 

NGBoost, and XGboost outperformed Naïve Bayes, SGD and Logistic Regression (with an exception of KNN and SVM, 

as their runtime is very high for real time usage) in terms of ML performance metrics thereby attesting to the claims 

made by other studies that Tree based techniques perform better than other techniques in the field of HAR (Sánchez and 

Skeie 2018).  

     When performance metrics of ML techniques for individual activities and common activities are compared with 

grouped activities, all the ML techniques performed better when activities are grouped as locomotive or stationary 

activities. This supports the assertion that it is particularly challenging to differentiate similar activities among a particular 

group (stationary and locomotive). Although, this observation is expected, this comparison provides an additional 

dimension for comparing ML techniques behavior.  

     Although, previous studies achieved accuracies up to 0.97 and F1 score of 0.84 with just the wrist position using deep 

learning techniques (Baldominos et al. 2019), this study obtained much higher accuracies and F1 scores using less 

complex ML techniques compared to neural network based techniques. However, in every dataset utilized, a combination 

of three or more sensor positions were employed. Therefore, evaluating the performance for each sensor position 

separately would give more insights but drastically increases the complexity of the analysis given the additional 

consideration for the number and location of sensors. This can be further explored in the future research. 

     When run-time is analyzed, it is expected that the dataset having more data (both in terms of features as well as data 

collected) would take more time to run a particular ML technique. Accordingly, in all considered scenarios, the predicting 

run time for any ML technique is highest when Pamap2 dataset is employed, followed by SWELL, and mHealth. Usually, 

all the ML techniques take more time for training and takes less time for predicting. Naïve Bayes technique on the other 

hand, took the least time for training the model but took a relatively long time for prediction using the test data. Naïve 

Bayes model size (with respect to the number of model parameters to be estimated) is relatively small compared to the 

other ML techniques considered. Moreover, depending on the conditional independence assumption being true, the 

model converges very fast resulting in a low training run time and less data being required for training compared to the 

other datasets considered (Mark 2015). If we consider any real time application that requires recognition of human 

activity, the main concern for designing the application would be minimizing prediction run time while maintaining 

acceptable classification performance. This puts Naïve Bayes ML technique at a disadvantage. Further, Logistic 

Regression tend to have the shortest run time while KNN has the longest run time in most of the cases considered.  

     Considering the tradeoff between classification performance represented using accuracy we find that DT with Entropy 

appears on the pareto efficient frontier regardless of the data set. DT with entropy is also the sole ML technique that is 

Pareto efficient for the Pamap2 dataset. Random Forest and Logistic Regression are Pareto efficient for SWELL and 

MHealth, while XGBoost is Pareto efficient for SWELL only. The prevalence of tree-based ML techniques such as DT 

with entropy, Random Forest, and to some extent XG Boost further supports prior research tree based techniques perform 

better than other techniques in the field of HAR (Sánchez and Skeie 2018). Although, KNN has a relatively long run 

time, it exhibits the best classification performance irrespective of the HAR dataset. Interestingly, KNN and SVM are in 

effect Pareto efficient for MHealth. However, run time for these two techniques is in the order of four magnitude larger 

than the run time for the other techniques rendering a steep tradeoff between run time and classification performance. 

This, considering very high run time of SVM and KNN, neither of these techniques may be suitable for real time 

applications. 

     If an application is more interested in the accuracy, low on budget for additional sensors such as heart rate monitor, 

then XGBoost would be an ideal solution with some run time tradeoff compared to Random Forest. Similarly, if an 

application is more interested in short run time, then Decision Tree with entropy would be an ideal solution with a small 

tradeoff with the accuracy. But in most of the other cases, DT with Entropy is the optimal performer for any combination 

of weighted performance metrics selected. There can always be some exceptions such as in an application with very 

limited data, then KNN or XGBoost might be a better fit depending on the size of data. 



Journal of the Midwest Association for Information Systems | Vol. 2021, Issue 1, January 2021 57 

Ambati, El-Gayar / ML Comparison for HAR 

     In essence, depending on the requirements of the HAR application and data amount, we can choose the sensor types 

(Shoaib et al. 2014), sensor positions (Baldominos et al. 2019), ML techniques (Dohnálek et al. 2014), sampling 

frequency (Wang et al. 2019), and similar characteristics based on the insights provided in this research. The key insights 

pointed out in this study: 

• It is relatively difficult to differentiate similar activities among a particular group (stationary and locomotive).

• High sampling frequency improves the ML performance metrics (Accuracy, precision, recall, F1 score, and support),

however, it will take a toll on the run-time.

• DT with Entropy stands out to be the optimal performer in most cases of the HAR applications.

• Ensemble techniques outperforms traditional ML techniques in terms of ML performance metrics except run time

for HAR data.

• Naïve Bayes technique is efficient when there are more activities involved.

• Naive Bayes technique takes the least time for training the data and build the model but takes a heavy toll in time

taken for predicting the test data.

6. Conclusion

     In this study, the performance of various ML techniques used for HAR are evaluated using ML performance metrics 

such as accuracy, precision, recall, F1 score, and run time on multiple HAR datasets. We investigated the relationship 

of different HAR dataset characteristics to the performance of various ML techniques. Examples include the amount of 

the data collected, sampling frequency, sensor types, type of activity performed, number of activities performed, and 

sensor positions. Although, DT with Entropy performed best on most types of HAR data considering its performance 

metrics across all the datasets, there is no single silver bullet for HAR data. The findings highlight the importance to 

tailor the selection of ML technique based on the specific HAR requirements and the characteristics of the associated 

HAR dataset. Future research can analyze the impact of sensor types and positions individually on ML performance.  

Another potential future research avenue of this study is extending the portfolio of ML techniques to include an 

investigation of deep learning and (more importantly in the context of wearables, light-weight architectures). Future 

research could also explore the effect of various pre-processing to further explore the Pareto efficient frontier between 

run-time performance and classification performance. 
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1. Introduction

Data available on the World Wide Web is measured in zettabytes (Cisco Systems, 2017). This vast volume of data 

presents researchers and practitioners with a wealth of opportunities for gaining additional insights about individuals, 

organizations, or even macro-level socio-technical phenomena in real time. Not surprisingly, Information Systems 

researchers are increasingly turning to the web for data that can be used to address their research questions (e.g. see Geva 

et al., 2017; Gunarathne et al., 2018; Triche and Walden 2018; Vaast et al., 2017) 

Harnessing the vast data from the web often requires a programmatic approach and a good foundation in various web 

technologies. Besides vast volume, there are three other common issues associated with accessing and parsing the data 

available on the web: variety, velocity, and veracity (Goes, 2014; Krotov & Silva, 2018). First, web data comes in a 

variety of formats that rely on different technological and regulatory standards (Basoglu & White, 2015). Second, this 

data is characterized by extreme velocity. The data on the web is in a constant state of flux, i.e., it is generated in real 

time and is continuously updated and modified. Another characteristic of web data is veracity (Goes, 2014). Due to the 

voluntary and often anonymous nature of the interactions on the web, quality and availability of web data are surrounded 

with uncertainty. A researcher can never be completely sure if the data he or she needs will be available on the web and 

whether the data is reliable enough to be used in research (Krotov & Silva, 2018). 

Given these issues associated with “big web data”, harnessing this data requires a highly customizable, programmatic 

approach. One functional and easily-customizable platform for retrieving and analyzing web data is R - one of the most 

widely-used programming languages in Data Science (Lander, 2014). R can be used not only for automating web data 

collection, but also for analyzing this data using multiple techniques. Currently, there are more than 16,000 R packages 

for various data analysis techniques - from basic statistics to advanced machine learning (CRAN, 2020). Some packages 

are useful for web crawling and scraping, pre-processing, and organizing data stored on the web in various formats.  

The following sections introduce the reader to the web scraping infrastructure in R. First, a general overview of the 

web scraping process is provided. This overview provides a high-level understanding of the steps and technologies 

involved in automatically sourcing data from the web.  Second, the tutorial provides an overview of the “rvest” and 

“xml2” R packages. These packages are useful for writing web crawling applications and retrieving data from the web 

in various formats. Third, the article provides simple examples of web scraping code written in R together with a longer 

and more complex example of automating a web scraping task. The final section discusses implications for researchers 

and practitioners and the usefulness of the web scraping approach. 

2. Web Scraping in R: An Overview

In this tutorial, web scraping is broadly defined as using technology tools for automatic retrieval and organization of 

data from the web for the purpose of further analysis of this data (Krotov & Tennyson, 2018; Krotov & Silva, 2018; 

Krotov et al., 2020). Web scraping consists of the following main, intertwined phases: website analysis, website

crawling, and data organization (see Figure 1) (Krotov & Silva, 2018). Although listed in order, these phases are often 

intertwined. A researcher has to go back and forth between those phases until a clean, tidy dataset suitable for further 

analysis is obtained.  

Figure 1. Web Scraping (Adapted from Krotov & Tennyson, 2018; Krotov & Silva, 2018; Krotov et al., 2020)
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The "Website Analysis" phase  involves  examining  the underlying  structure of  a  website or a web repository in order 

to understand how the needed data is stored at the technical level (Krotov & Tennyson, 2018; Krotov & Silva, 2018;

Krotov et al., 2020).  This is often  done one  web  page  at a  time. This  analysis requires a basic understanding of the

World Wide Web architecture and some of the most commonly used Web technologies used for storing and 

transmitting data on the web: HTML, CSS, and XML. 

The "Web Crawling" phase involves developing and running a script that automatically browses (or “crawls”) the 

web and retrieves the data needed for a research project (Krotov & Tennyson, 2018; Krotov & Silva, 2018; Krotov et 

al., 2020). These crawling applications (or scripts) are often developed using programming languages such as R or

Python. We argue that R is especially suitable for this purpose. This has to do with the overall popularity of R in the 

Data Science community and availability of various packages for automatic crawling (e.g. the “rvest” package in R) 

and parsing (e.g. the “xml2” package in R) of web data. Furthermore, once data is retrieved using R, it can be subjected 

to various forms of analysis available in the form of R packages. Thus, R can be used to automate the entire research 

process – from the time data is acquired to the time visualizations and written reports are produced for a research 

paper or presentation (the latter can be accomplished with the help of the package called “knitr”).

The “Data Organization” phase involves pre-processing and organizing data in a way that enables further analysis 

(Krotov & Tennyson, 2018; Krotov & Silva, 2018; Krotov et al., 2020). In order to make further analysis of this data

easy, the data needs be to be clean and tidy. Data is in a tidy format when each variable comprises a column, each 

observation of that variable comprises a row, and the table is supplied with intuitive linguistic labels and the necessary 

metadata (Wickham, 2014b). A dataset is “clean” when each observation is free from redundancies or impurities (e.g. 

extra white spaces or mark-up tags) that can potentially stand in the way of analyzing the data and arriving to valid 

conclusions based on this data. This often requires the knowledge of various popular file formats, such as Excel or CSV. 

Again, R contains various packages and built-in functions for working with a variety of formats. This is another set of 

features that make R especially suitable for web scraping. 

Most of the time, at least some of the processes within these three phases cannot be fully automated and require at 

least some degree of human involvement or supervision (Krotov & Tennyson, 2018; Krotov & Silva, 2018; Krotov et 

al., 2020). For example, “ready-made” web scraping tools often select wrong data elements from a web page. This

often has to do with poor instructions supplied by the user of such tools or an ambiguous mark-up used to format data. 

These tools also often fail to save the necessary data elements in the “tidy data” format (Wickham, 2014b), as data 

cleaning often requires human interpretation of what this data represents. Moreover, numerous networking errors are 

possible during web crawling (e.g. an unresponsive web server) that require troubleshooting by a human. Finally, things 

change so fast on the web! A ready-made tool that is working now may not work in the future due to changes made to a 

website. This is due to the fact that a ready-made tool may not be fully customizable or modifiable (at least, not from the 

perspective of a regular user). Thus, changes in the underlying technology behind a website may not be accommodated 

using the existing features of the tool. All these problems become more acute for large, complicated web scraping tasks, 

making these “ready-made” tools practically useless. Thus, at least with the current state of technology, web scraping 

often cannot be fully automated and requires a “human touch” together with a highly customizable approach.  

3. R Packages Needed for Web Scraping

Developing custom tools for web scraping requires a general understanding of the web architecture; a good 

foundation in R programming and RStudio Environment, and at least basic knowledge of some of the most commonly 

used mark-up languages on the web, such as HTML, CSS, and XML. This tutorial assumed that the readers have the 

necessary foundation in the aforementioned tools and technologies. If not, then the readers can use the resources listed 

in Appendix A to get the necessary background knowledge.  

Skipping all these foundational knowledge areas, this part of the tutorial focuses on the functionality of two R 

packages available from the Comprehensive R Archive Network (CRAN): “rvest” and “xml2”. Both packages can be 

downloaded and installed for free from CRAN (see https://cran.r-project.org/). The primary use of the “rvest” package 

is simulating browser sessions necessary for “crawling” a website. Although the “rvest” package also has some tools for 

data parsing (e.g. saving HTML code as text), this functionality is often derived from the “xml2” package, which contains 

a wide variety of tools necessary for parsing data. The functionalities of both packages are explained in detail in the 

sections below. Short web scraping example that rely on these packages are provided at the end of this section.   

3.1 Rvest Package 

This section contains an overview of the R package called “rvest”. Some tables, examples, and related explanations 

in this section come from Krotov & Tennyson (2018) and Wickham (2016). There are many features that make “rvest” 

useful for accessing and parsing data from the web. First, “rvest” contains many functions that can be used for simulating 

sessions of a web browser. These features come in handy when one needs to browse through many webpages to download 
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the needed data (this is referred to as the “web crawling” process). Second, “rvest” contains numerous functions for 

accessing and parsing data from web documents in HTML, XML, CSS, and JSON formats. 

Some of the most essential functions of the rvest package are listed in Table 1. Many other functions are available as 

a part of “rvest” package (Wickham, 2016). One should refer to the official “rvest” documentation to learn more about 

the package and its usage (see Wickham, 2016).  

Table 1. Some Functions of the rvest Package (Reprinted from Wickham, 2016; Krotov & Tennyson, 2018) 

Function Usage and Purpose Arguments 

Usage:  read_html(x, ..., encoding = "") 

Purpose: This function reads HTML code of a web page 

from which data is to be retrieved. Can be used for 

reading XML as well.  

• x: A url, a local path, or a string containing HTML

code that needs to be read

• …: Additional arguments can be passed to a URL

using the GET() metod

• encoding: specify encoding of the web page being read

Usage: html_nodes(x, css, xpath) 

Purpose: This function is used to select specific elements 

of a web document. To select these specific elements one 

can use CSS elements which contain the needed data or 

use XPath language to specify the “address” of an 

element of a web page 

• x: A document, a node, or a set of nodes from which

data is selected

• css, xpath:  a name of a CSS element or an XPath 1.0

link can be used to select a node

Usage:  html_session(url, ...) 

Purpose: This function allows to start a web browsing 

session to browse HTML pages for the purpose of 

collecting data from them. 

• url: address of a web page where browsing starts

• …: Any additional httr config commands to use

throughout session

Usage: html_table(x, header = NA, trim = TRUE, fill = 

FALSE, dec = ".") 

Purpose: This function can be used to read HTML tables 

into data frames (a commonly used data structure in R). 

Can be especially useful for reading HTML tables 

containing financial data. 

• x: A node, node set or document

• header:  if NA, then the first row contains data and not

column labels

• trim: if TRUE, the function will remove leading and

trailing whitespace within each cell

• fill: If TRUE, automatically fill rows with fewer than

the maximum number of columns with NAs

• dec: The character used as decimal mark for numbers

3.2 Xml2 Package 

In the past, the rvest package was also used to with XML documents using such functions as xml_node(), xml_attr(), 

xml_attrs(), xml_text() and xml_tag(). Eventually, these XML functions branched out into “xml2” package designed 

specifically to work with XML files (including with XML files retrieved from the web). The package has numerous 

functions for working with XML data. Some of the most commonly used functions of this package together with their 

commonly used arguments are listed in Table 2 below. Additional details about the functions listed in Table 2 (together 

with many other functions omitted here) are provided in Wickham et al. 2018. 
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Table 2. Some Functions of the xml2 Package (Reprinted from Wickham et al., 2018) 

Function Usage and Purpose Arguments 

Usage:  read_xml(x, encoding = "", ..., as_html = FALSE, 

options = "NOBLANKS") 

Purpose: This function reads XML and HTML files. 

• x: a string, a connection, or a raw vector

• encoding: specify a default encoding for the document

• ...: additional arguments passed on to method

• as_html: optionally parse an XML file as if it’s HTML

• options: set parsing options for the libxml2 parser

Usage:  xml_children(x); xml_contents(x); 

xml_parents(x); 

xml_siblings(x) 

Purpose: These functions are used for navigating through 

an XML document structure. xml_children returns only 

elements, xml_contents returns all nodes, xml_parents 

returns all parents up to the root, xml_siblings returns all 

nodes at the same level,  

• x: a document, node, or node set.

Usage: xml_find_all(x, xpath) 

Purpose: Finds all XML nodes that match a particular 

XPath expression 

• x: a document, node, or node set.

• xpath: a string containing an xpath (1.0) expression

Usage: xml_text(x, trim = FALSE); xml_set_text(x, 

value) 

Purpose: Used to extract or replace text in an XML 

document, node, or node set.   

• x: a document, node, or node set

• trim: If TRUE will trim leading and trailing spaces

• value: character vector with replacement text

4. Simple Web Scraping Examples

The four examples provide below show how to use the “xml2” and “rvest” packages for accessing data in XML, 

HTML, and CSS format.  

The first example comes from Krotov and Tennyson (2018). The example illustrates how “xml2” package is used to 

extract financial data from an online XML document. The document can be found here: 

https://www.sec.gov/Archives/edgar/data/1067983/000119312518238892/brka-20180630.xml 

The XML document is a 10-Q statement for Berkshire Hathaway, Inc. posted on EDGAR (an open web database of 

financial statements of publicly listed companies). Technically, the document is an XBRL (eXtensible Business 

Reporting Language) instance file. XBRL is an extension of XML language used specifically for interexchange of 

financial reporting data over the web. Since XBRL is based on XML, one can use the common functions of “xml2” 

package to work with this data. More specifically, the example below extracts the Net Income data reported by Berkshire 

Hathaway and saves this data into a data frame named Net_Income_Data. 
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#This example requires xml2 R package 

require(xml2) 

#Parse XML from an online document found at the URL specified below 

URL <- "https://www.sec.gov/Archives/edgar/data/1067983/000119312518238892/brka-20180630.xml" 

XML_data <- read_xml(URL) 

#Save all nodes related to Net Income or Loss as defined by US GAAP 

Nodes <- xml_find_all(XML_data, ".//us-gaap:NetIncomeLoss") 

#Convert the node structure into a character vector 

Nodes_Vector <- as.character(Nodes) 

#Retreive values for all Net Income or Loss elements and save them into a vetcor 

#These are dollar values for each Net Income or Loss item reported in the 10Q document 

Nodes_Values <- xml_text(xml_find_all(XML_data, ".//us-gaap:NetIncomeLoss")) 

#Bind the vectors together as columns and convert the structure into a data frame 

#The data frame contains two columns and four rows 

Net_Income_Data <- data.frame(cbind(Nodes_Vector,Nodes_Values)) 

The resulting data frame (Net_Income_Data) contains various XBRL attributes of each node containing Net Income 

or Loss data together with the dollar value of Net Income or Loss (in dollars) reported for each of these items. The 

definitions of each of the four Net Income or Loss items can be explored further by analyzing the values of attributes for 

each of the nodes saved in the data frame.  

The next example also comes from Krotov and Tennyson (2018). This example  illustrates how the “rvest” package 

can be used for accessing data from an HTML page available on the web: 

https://www.sec.gov/Archives/edgar/data/1067983/000119312516760194/d268144d10q.htm 

This HTML page also contains a 10-Q statement posted by Berkshire Hathway on EDGAR, albeit from a different 

period. This time, the goal is to retrieve Balance Sheet data from the statement. This data is available in the form of an 

HTML table. The HTML table is a part of the HTML web page containing the entire 10-Q statement by Berkshire 

Hathaway. The table data is retrieved and saved into a data frame called “balance_sheet_data” using the R code below. 

#This script requires the rvest package to be installed and activated 

require(rvest) 

#The variable url contains a URL to the 10-Q document published via EDGAR 

url <- "https://www.sec.gov/Archives/edgar/data/1067983/000119312516760194/d268144d10q.htm" 

#read_html() function from rvest package used to read HTML code from page 

tenqreport_html <- read_html(url) 

#xpath used to retreive HTML code specifically for balance sheet table  

balance_sheet_html <- html_nodes(tenqreport_html, 

xpath='/html/body/document/type/sequence/filename/description/text/table[7]') 

#HTML code from the balance sheet table is obtained 

balance_sheet_list <- html_table(balance_sheet_html) 

#Balance sheet data is saved from a list into a data frame 

balance_sheet_table <- balance_sheet_list[[1]] 

Once balance sheet data is saved into a data frame (named “balance_sheet_table” in this example), individual values 

from the balance sheet can be accessed and used in calculations. For example, certain accounting ratios can be calculated. 

Alternatively, one can match the balance sheet with other data related to the company and available on the web. The 

“rvest” package can be used in a similar fashion to obtain quantitative and qualitative data from the same HTML 

document or other sources on the web. 
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The code below illustrates how to access top reviews for the iPadPro product listed on Amazon.com. This time, a 

CSS selector is used to retrieve top reviews for this particular product listed on Amazon. The SelectorGadget tool was 

used to find an XPath for the CSS element containing the top reviews. The resulting variable review_text is a character 

vector containing 6 reviews. Note that only a portion of one review was displayed to save space. 

#Require the rvest package 

require(rvest) 

#Read HTML code for Apple iPad Pro 

ipad_page <- 

read_html("https://www.amazon.com/gp/product/B01CGXU0GM/ref=s9_dcacsd_dcoop_bw_c_x_17_w") 

#Access top reviews for the product and save them in review_text 

review <- html_nodes(ipad_page, xpath='//*[contains(concat( " ", @class, " " ), concat( " ", "a-expander-

partial-collapse-content", " " ))]') 

review_text <- html_text(review) 

#Display top customer reviews 

review_text 

## [6] "To fully understand my review, must explain a few things. I come to owning the iPad Pro 9.7\" via 

a long lineage of Macs, iPods, iPhones and iPads. 

The final example is supplied with the “rvest” package (Wickham, 2016). It involves retrieving rating and cast data 

for “The Lego Movie” found on IMDb website from corresponding HTML or CSS elements. Again, the SelectorGadget 

can be used to find XPath link associated with each of these elements – this should save time and eliminate the need to 

be knowledgeable in the particularities of XPath syntax.  The “%>%” string in the example below is the so called “pipe” 

operator used to pass results from one function to another function. Thus, the operator simplified the code by creating a 

“pipeline” that performs work on data using various functions. The contents of the “rating” and “cast” variables are 

displayed.  

library(rvest) 

lego_movie <- read_html("http://www.imdb.com/title/tt1490017/") 

rating <- lego_movie %>% 

  html_nodes("strong span") %>% 

  html_text() %>% 

  as.numeric() 

rating 

#> [1] 7.8 

cast <- lego_movie %>% 

  html_nodes("#titleCast .itemprop span") %>% 

  html_text() 

cast 

#>  [1] "Will Arnett"     "Elizabeth Banks" "Craig Berry"     

#>  [4] "Alison Brie"     "David Burrows"   "Anthony Daniels" 

#>  [7] "Charlie Day"     "Amanda Farinos"  "Keith Ferguson"  

#> [10] "Will Ferrell"    "Will Forte"      "Dave Franco"     

#> [13] "Morgan Freeman"  "Todd Hansen"     "Jonah Hill" 

As one can see from the examples provided this section, “rvest” is a robust package that can be fine-tuned to 

automatically scrape data for virtually any Information Systems research project requiring web data. The next section 

contains a more elaborate example of a web scraping project relying on the “rvest” package. 

5. A Complex Web Scraping Example

This section contains an example of a web scraping project involving Bayt.com, a leading employment website in 

the Middle East. At any point in time, the website contains thousands of employment ads from various industries and for 
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a diverse set of roles. The data collected from the website can be used to answer a number of interesting questions about 

IT competencies together with competencies in other industries and roles. The example is structured in accordance with 

the three phases of web scraping discussed previously: Website Analysis, Website Crawling, and Data Organization. 

Apart from being larger and more complex, there are three features of this more elaborate example that make it 

different from the examples provided earlier. First, the dataset retrieved is fairly large. Second, retrieving the dataset 

involves “crawling” the website one page at a time. This is in contrast to the previous examples where data is accessed 

from a single web page. Third, the data is saved into a file on the computer after the web scraping task is completed. 

5.1 Website Analysis 

The web scraping project aimed at retrieving data from Bayt.com starts with the examination of the underlying 

structure of the website. The structure of the Bayt.com site is fairly typical for a job posting site. One way to browse job 

postings is by sector (http://www.bayt.com/en/international/jobs/sectors/). When viewing the "Jobs by Sector" page, a 

list of sectors (such as "Technology and Telecom") is displayed, each as a hyperlink (see Figure 2). 

Figure 2. The Bayt.com website when viewing “Jobs by Sector” 

Each job sector, therefore, can be accessed using a unique URL. The "Technology and Telecom" and "Banking and 

Finance" sectors, for example, can be accessed using the following URLs: 

https://www.bayt.com/en/international/jobs/sectors/technology-telecom/ 

https://www.bayt.com/en/international/jobs/sectors/banking-finance/ 

Note that each URL shares the same base URL, and each is distinguished only by its respective subfolder. This 

observation will be useful when scraping the website sector by sector later during the Web Crawling phase. 

When a particular sector's webpage is viewed, links to the individual job postings are listed, but only in "pages" of 

twenty at a time. Each page of jobs can be accessed through its own URL, as follows: 

https://www.bayt.com/en/international/jobs/sectors/banking-finance/?page=1 

https://www.bayt.com/en/international/jobs/sectors/banking-finance/?page=2 
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https://www.bayt.com/en/international/jobs/sectors/banking-finance/?page=3 

On each of these pages, its twenty unique job postings are represented in HTML as a series of "div" elements. Each 

"div" element contains a hyperlink with the following structure: 

<a data-js-aid="jobID" href="...">Job Title</a> 

So, for each job posting, a hyperlink exists that contains all of the information we are scraping. Notice that the element 

is identified with a distinctive attribute (data-js-aid) that has "jobID" as the value. Therefore, we will need to collect all 

of the <a> elements that have that distinctive attribute/value pair. Then we will extract the content of the <a> element to 

get the title, and we will extract the value of the "href" attribute to get the URL. 

Also, on each of these pages, there is a <link> element containing the URL to the next page of jobs. The <link> 

element has the following structure: 

<link rel="next" href="..." /> 

This will be the element used to determine the URL of the next page of job listings. We will look for a <link> element 

with a "rel" attribute whose value is "next". Once that element is found, we will use the value of the "href" attribute to 

determine the URL of the next page of jobs. We will know that we've reached the end of the job listings for the current 

sector if such an element doesn't exist, at which point we will move on to the next sector of jobs and continue from there. 

In this section, we have evaluated the structure of the website, identified how the website can be methodically and 

programmatically accessed, identified which HTML elements contain our desired information, and inspected the HTML 

to determine how those elements can be accessed. Therefore, the "Website Analysis" phase is complete. 

5.2 Website Crawling 

Once the elements that contain the target data have been identified and the respective HTML has been inspected 

(during the "Website Analysis" phase as discussed in the previous subsection), the data must actually be extracted. In 

this subsection, we will walk through the script shown in Appendix B step-by-step to demonstrate how the R language 

can be used to scrape data from the Bayt.com website. 

In overview, the script will operate as follows: 

1. The necessary library packages will be imported.

2. The working directory will be set.

3. Important input and output variables will be initialized

4. A loop will be set up to iterate through each job sector. At each iteration, one sector will be processed by

visiting that sector's webpage.

5. Another loop will be set up to iterate through each page of jobs for that sector. At each iteration, one page

of jobs will be processed. A list of the jobs accessible via that page will be collected.

6. Yet another loop will be set up to iterate through that list of jobs. At each iteration, one job posting will be

processed. Each job's title and URL title will be extracted. The information will be saved.

7. Finally, once all of the jobs, pages, and sectors have been processed, a file containing all of the collected

data will be written.

The remainder of this section will examine and discuss the corresponding lines of the script in detail. 

Lines 1-4: 

#Required packages 

require(tm) 

require(rvest) 

require(XML) 

These lines are used to load packages into the current session, so that their functions can be called. As it was explained 

earlier, the purpose of the rvest package is "to make it easy to download, then manipulate, both html and xml" documents 

(Wickham, 2016). The XML package contains functions for parsing XML documents, and is required by the rvest 

package. Various functions that are contained in these packages are used throughout the scripts, and will be discussed 

within the context of those portions of the script in which they are used. 
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Lines 6-19: 

#Set working directory 

setwd("C:/Users/.../Research/WebScraping") 

#Identify job sectors from which to scrape data 

sectors <- c("banking-finance", 

    "technology-telecom", 

    "media-creative") 

#Create frame in which data results will be stored 

job_data <- data.frame(Sector=character(0), 

  Title=character(0), 

  URL=character(0)) 

colnames(job_data) <- c("Sector", "Title", "URL") 

These lines are used to set up the working environment for the script. The working directory specifies the local 

directory from which any input files will be read and to which any output files will be written. The directory should be 

set as desired. The "sectors" vector identifies which job sectors will be queried for job postings. Recall from the "Website 

Analysis" section that each sector has its own URL such that each URL shares the same base address but is distinguished 

only by its respective subfolder. The values in this vector represent those subfolders, and so they must match the URL 

subfolder exactly. The "job_data" frame will be used to store all of the extracted information. Each row of the frame will 

represent exactly one job posting, while the columns of the frame correspond to the bits of information being collected 

(i.e., "Sector, "Title", and "URL"). 

Lines 21-25: 

#For each job sector (each job sector will be processed one at a time) 

for (sector in 1:length(sectors)) 

{ 

  base_url <- "https://www.bayt.com/en/uae/jobs/sectors/" 

  page_url <- paste(base_url, sectors[sector], sep="") 

These lines are used to loop through each job sector, one at a time. The first line sets up the loop to iterate exactly as 

many times as there are sectors. The "base_url" variable represents the base URL for all of the job sector websites. That 

base URL is then concatenated with the name of the current job sector to create the "page_url" variable. 

Lines 27-32: 

  #For each page of jobs within the sector 

  repeat 

  { 

    #Read website for the current sector page 

    page_html <- read_html(html_session(page_url)) 

    cat(paste(page_url, "\n")) #display script progress 

These lines are used to loop through each page of jobs within the current sector. The "html_session" function (from 

the rvest package) is used to send an HTTP request for the specified webpage and simulate the functionality of a browser. 

The "read_html" function is used to get the raw HTML code for the webpage associated with that session. The "cat" 

function is used to simply display output to the console as the script is executing to indicate to the user which page is 

currently being processed. 

Lines 34-36: 

    #Retreive the list of job links 

    a_elements <- html_nodes(page_html, "a[data-js-aid=\"jobID\"]") 

    cat(paste(length(a_elements), " jobs found\n", sep="")) #display progress 

These lines are used to collect all of the <a> elements that contain the desired information (job title and URL). Recall 
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from the "Website Analysis" section that each page contains a list of job postings. For each job posting in the list, an <a> 

element exists, which contains a hyperlink to the respective job posting. Each of these <a> elements is identified with a 

distinctive "data-js-aid" attribute having "jobID" as the value. The "html_nodes" function is used to retrieve a list of these 

relevant <a> elements. 

Lines 38-44: 

    #For each job within the current page (process one job at a time) 

    for (i in 1:length(a_elements)) 

    { 

      job_href <- xml_attr(a_elements[i], "href") 

      job_url <- paste("https://www.bayt.com", job_href, sep="") 

      job_title <- html_text(a_elements[i], trim=TRUE) 

      cat(paste(" ", i, ". ", job_title, "\n", sep="")) #display progress 

For each of the <a> elements that were collected in the previous step, we must extract the job title and the URL for 

the respective job posting. The value of the "href" attribute tells us the URL of the job posting, so we use the "xml_attr" 

function to extract it. The "href" attribute contains only a relative path, so the Bayt.com domain is prepended to create a 

complete URL and stored in the "job_url" variable. The content of the <a> element contains the job title, so the 

"html_text" function is used to extract it, which is stored inside the "job_title" variable. The "cat" function is used to 

display the progress of the script as it executes by printing the title of the job that was just extracted. 

Lines 46-53: 

      #Consolidate all the information about this job into a single dataframe 

      job_info <- data.frame("Sector"=sectors[sector], 

  "Title"=job_title, 

  "URL"=job_url) 

      #Write the current job info to the frame where all data is stored 

      job_data <- rbind(job_data, job_info) 

    } 

At this point in the script, all of the data for the current job posting will have been retrieved. These lines from the 

script are used to simply write that data to a single-row data frame, and then append that row to the "job_data" frame, 

where the aggregation of all the data from all the job postings will be stored. The closing brace "}" is used to end the 

loop that is being used to iterate through each job. 

Lines 55-59: 

    #Get the URL for the next page 

    next_html <- html_node(page_html, "link[rel=\"next\"]") 

    if(length(next_html)==0) 

      break 

Recall from the "Website Analysis" section that there is a <link> element that contains the URL for the page of jobs. 

It is distinguished by having a "rel" attribute with the value "next", so the "html_node" function is used to extract that 

element from the HTML, which is stored in the "next_html" variable. If the element is not found, then the variable will 

have a length of zero, in which case we will break out of the loop. This will end the execution of the loop that is iterating 

through each page within the sector, so we will then move on to the next sector. 

Lines 61-62: 

    next_xml <- xmlParse(next_html, asText=TRUE) 

    page_url <- xmlAttrs(xmlRoot(next_xml))["href"] 

These lines of code will only be reached if we did not break out of the loop during the execution of the previous lines 

of code, which means that there are still more pages of jobs to process. So, we use the "xmlParse" function to read the 

HTML as XML, and use the "xmlAttrs" function to extract the value of the "href" attribute, which will contain the URL 

of the next page of job listings. We update the "page_url" variable with that new URL, and we are then ready for the next 

iteration of the loop, so that we can process the next page of job listings. 



    Journal of the Midwest Association for Information Systems | Vol. 2021, Issue 1, January 2021

Krotov, Tennyson / Web Scraping in R 

72

5.3 Data Organization 

In the "Data Organization" phase of the web scraping process, the data retrieved during the previous phase is 

organized into a useful format, such as a spreadsheet. In this case, our data is conveniently collected into a data frame 

(called "job_data" in the script) that has the exact same structure as a columnar table. That data is written to a comma-

separated CSV file in the very last line of the script, which is shown below: 

#Finally, write the collected data to an output file 

write.table(job_data, file="output_data.csv", sep=",", col.names=TRUE, row.names=FALSE) 

The CSV file can be opened in a spreadsheet program such as Excel. In this example, no further manipulation of the 

data is necessary. Our data is clean and tidy. However, in general, if additional manipulation of the data is necessary, it 

would be performed at this stage. Conditional formatting could be added to the spreadsheet to highlight minimum or 

maximum values; pivot tables could be added to see different views of the data; and so on. 

6. Implications for Researchers and Practitioners

We believe that web scraping using R offers a number of advantages to researchers and practitioners. First, when 

dealing with Big Data, even simple manipulations with quantitative data or text can be quite tedious and prone to errors 

if done manually. The R environment can be used to automate a number of simple and also complex data collection and 

transformation processes and techniques based on complex data transformation heuristics (Krotov & Tennyson, 2018). 

Second, using R for web scraping and subsequent analysis ensures reproducibility of research (Peng, 2011) – something 

that is central to the scientific method. Any manual manipulation of data may involve subjective choices and 

interpretations in relation to what data is retrieved and how it is formatted, pre-processed, and saved. Oftentimes, even 

simple research involving basic data analysis cannot be replicated by other researchers due to the errors made at various

stages of data gathering and analysis (e.g. see The Economist, 2016). With R, all aspects of data retrieval and 

manipulation can be unambiguously described and then reproduced by other researchers by running the script used for 

data collection. Finally, once web data is retrieved using R, it can be subjected to virtually all known forms of analysis 

implemented via thousands user-generated R packages available from CRAN. The data can also be used for creating

various data products (e.g. via the Shiny tool available with RStudio) – something that can be of relevance for 

industry researchers.  

7. Conclusion

The World Wide Web is a vast repository of data. Many research questions can be addressed by retrieving and 

analyzing web data. Unfortunately, web data is often unstructured or semi-structured, based on somewhat loose 

standards, and generated or updated in real time. Retrieving such data for further analysis requires a programmatic 

approach. Developing web scraping scripts that automate data collection from the web, regardless of which programming 

language is used for that, requires a good understanding of web architecture and some of the key web technologies, such 

as HTML, CSS, and XML. As demonstrated in this tutorial, the R environment is an effective platform for creating and 

modifying automated tools for retrieving a wide variety of data from the web. We believe that the approach to web 

scraping outlined in this tutorial is general enough to serve as a good starting point for any academic or industry-based 

research project involving web data. Also, given the brief yet detailed coverage of all fundamental technologies 

underpinning web scraping in R, this tutorial can also be used by instructors in various Information Systems and Analytics 

courses to introduce students to web scraping in R.  



Journal of the Midwest Association for Information Systems | Vol. 2021, Issue 1, January 2021 73

Krotov, Tennyson / Web Scraping in R 

8. References

Basoglu, K. A., & White, Jr., C. E. (2015). Inline XBRL versus XBRL for SEC reporting. Journal of Emerging 

Technologies in Accounting, 12(1), 189-199. 

Cisco Systems. (2017). Cisco Visual Networking Index: Forecast and Methodology, 2016–2021. Retrieved from: 

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-

paper-c11-481360.pdf 

Comprehensive R Archive Network (CRAN). (2020). Retrieved from: https://cran.r-project.org/ 

Dynamic Web Solutions. (2017). A Conceptual Explanation of the World Wide Web. Retrieved from: 

http://www.dynamicwebs.com.au/tutorials/explain-web.htm 

Geva, T., Oestreicher-Singer, G., Efron, N., & Shimshoni, Y. (2017). Using Forum and Search Data for Sales 

Prediction of High-Involvement Products. MIS Quarterly,41(3), 65-82.

Goes, P. (2014). Editor’s comments: Big data and IS research, MIS Quarterly, 38(3), 3-8.

Gunarathne, P., Rui, H., & Seidmann, A. (2018). When social media delivers customer service: Differential customer 

treatment in the airline industry. MIS Quarterly, 42(2), 489-520.

Krotov, V., and Tennyson, M. F. (2018). Scraping financial data from the web using R language. Journal of Emerging 

Technologies in Accounting, 15(1), 169-181.

Krotov, V. and Silva, L. (2018). Legality and ethics of web scraping. The Twenty Fourth Americas Conference on 

Information Systems. 

Krotov, V. ,  Johnson, L. and Silva, L. (2020). Legality and ethics of web scraping. Communications of the

AIS, 47(1), 22.

Lander, J. P. (2014). R for Everyone: Advanced Analytics and Graphics. Boston, MA: Addison-Wesley.  

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226-1227.

The Economist (2016). “Excel errors and science papers”. Retrieved from https://www.economist.com/graphic-

detail/2016/09/07/excel-errors-and-science-papers 

Triche, J., & Walden, E. (2018). The Use of Impression Management Strategies to Manage Stock Market Reactions to 

IT Failures. Journal of the Association for Information Systems, 19(4), 333-357. 

Vaast, E., Safadi, H., Lapointe, L., & Negoita, B. (2017). Social Media Affordance for Connective Action: An 

Examination of the Microblogging Use During the Gulf of Mexico Oil Spill. MIS Quarterly, 41(4), 1179-1206.

Wickham, H. (2014a). Advanced R. Boca Raton, FL: CRC Press. 

Wickham, H. (2014b). Tidy data. Journal of Statistical Software, 59(10), 1-23. 

Wickham, H. (2016). Package ‘rvest’. Retrieved from: https://cran.r-project.org/web/packages/rvest/rvest.pdf 

Wickham, H., Hester, J. and Ooms, J. (2018). Package ‘xml2’. Retrieved from https://cran.r-

project.org/web/packages/xml2/xml2.pdf 



  Journal of the Midwest Association for Information Systems | Vol. 2021, Issue 1, January 2021

Krotov, Tennyson / Web Scraping in R 

74

Author Biographies 

Dr. Vlad Krotov is an Associate Professor of Management Information Systems at the 

Department of Computer Science and Information Systems, Arthur J. Bauernfeind College 

of Business, Murray State University. Dr. Vlad Krotov received his PhD in Management 

Information Systems from the Department of Decision and Information Sciences, University 

of Houston (USA).  His teaching, research and consulting work is devoted to helping 

managers and organizations to use Information and Communication Technologies for 

analyzing organizational data in a way that enhances organizational performance. His 

quantitative and qualitative research has appeared in a number of academic and practitioner-

oriented  journals  and  conferences, such  as:  CIO Magazine, Journal  of  Theoretical  and    

Applied E-Commerce, Communications of the Association of Information Systems, Business 

Horizons, Blackwell Encyclopedia of Management, America’s Conference on Information 

Systems  (AMCIS),  Hawaii  International  Conference  on  System  Sciences  (HICSS),   

     International Conference  on  Mobile Business (ICMB). His research was recognized by the   

     2016  research  was  recognized  by the  2016  Outstanding  Researcher  award  and 2017  

     Emerging Scholar award at Murray State University.  

Dr. Matthew Tennyson is an Associate Professor of Computer Science at the Department 

of Computer Science and Information Systems, Arthur J. Bauernfeind College of Business, 

Murray State University. Matthew earned his B.S. in Computer Engineering from Rose-

Hulman in 1999. After graduating, he worked at Caterpillar, developing embedded systems 

for various types of earth-moving machinery. In 2004 he earned his M.S. in Computer 

Science from Bradley University. A few years later, he started pursuing a Ph.D. at Nova 

Southeastern University, graduating in 2013. Matthew's teaching and research interests 

include software engineering, programming practice and theory, and computer science 

education. 



Journal of the Midwest Association for Information Systems | Vol. 2021, Issue 1, January 2021 75 

Krotov, Tennyson / Web Scraping in R 

Appendix A: Additional Resources 

Web Architecture 

The following online tutorials are recommended for those who want to learn more about web architecture: 

• Dynamic Web Solutions. 2017. A Conceptual Explanation of the World Wide Web. Available at:

http://www.dynamicwebs.com.au/tutorials/explain-web.htm

• Tutorials Point. 2017. HTTP Tutorial. Available at: http://www.tutorialspoint.com/http/

The World Wide Web Consortium (W3C) is the ultimate source on the technologies and specifications related to the 

web:  

• World Wide Web Consortium (W3C). 2017. Available at: https://www.w3.org/

HTML 

A free online tutorial from w3schools.com on HTML: 

• http://www.w3schools.com/html/default.asp

CSS 

A free online tutorial from w3schools.com on CSS: 

• http://www.w3schools.com/css/default.asp

XML 

A free online tutorial from w3schools.com on XML and a number of related technologies: 

• http://www.w3schools.com/xml/xml_exam.asp

In addition to providing a rather thorough treatment of XML, the tutorial also has sections devoted to related 

technologies, such as XML Namespaces, XML Schema, XPath and XLink  

R and RStudio 

We recommend the following book to people with basic understanding of computer programming but no previous 

knowledge of R:  

• Lander, J. P. 2014. R for Everyone: Advanced Analytics and Graphics. Boston, MA: Addison-Wesley.

The book contains an excellent introduction into various aspects of R language and contains a manual on installing and 

using RStudio. Much of the examples found in this note are based on this book. 

For those already familiar with R, the following advanced text on R can be recommended: 

• Wickham, H. 2014. Advanced R. Boca Raton, FL: CRC Press.

Alternatively, one can access various articles and tutorials on R online: 

• https://www.r-bloggers.com/how-to-learn-r-2/

For those wishing to get a practical introduction to data science in R and learn various related technologies and 

statistical techniques, the following online specialization from John Hopkins University is available in Coursera: 

• https://www.coursera.org/specializations/jhu-data-science
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Appendix B: Example Web Scraping Script 

#Required packages 

require(tm) 

require(rvest) 

require(XML) 

#Set working directory 

setwd("C:/Users/mtennyson/Documents/Research/WebScraping") 

#Identify job sectors from which to scrape data 

sectors <- c("banking-finance", 

    "technology-telecom", 

    "media-creative") 

#Create frame in which data results will be stored 

job_data <- data.frame(Sector=character(0), 

  Title=character(0), 

 URL=character(0)) 

colnames(job_data) <- c("Sector", "Title", "URL") 

#For each job sector (each job sector will be processed one at a time) 

for (sector in 1:length(sectors)) 

{ 

  base_url <- "https://www.bayt.com/en/uae/jobs/sectors/" 

  page_url <- paste(base_url, sectors[sector], sep="") 

  #For each page of jobs within the sector 

  repeat 

  { 

    #Read website for the current sector page 

    page_html <- read_html(html_session(page_url)) 

    cat(paste(page_url, "\n")) #display script progress 

    #Retreive the list of job links 

    a_elements <- html_nodes(page_html, "a[data-js-aid=\"jobID\"]") 

    cat(paste(length(a_elements), " jobs found\n", sep="")) #display progress 

    #For each job within the current page (process one job at a time) 

    for (i in 1:length(a_elements)) 

    { 

      job_href <- xml_attr(a_elements[i], "href") 

      job_url <- paste("https://www.bayt.com", job_href, sep="") 

      job_title <- html_text(a_elements[i], trim=TRUE) 

      cat(paste(" ", i, ". ", job_title, "\n", sep="")) #display progress 

      #Consolidate all the information about this job into single frame 

      job_info <- data.frame("Sector"=sectors[sector], 

  "Title"=job_title, 

  "URL"=job_url) 

      #Write the current job info to the frame where all data is stored 

      job_data <- rbind(job_data, job_info) 

    } 
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    #Get the URL for the next page 

    next_html <- html_node(page_html, "link[rel=\"next\"]") 

    if(length(next_html)==0) 

      break 

    next_xml <- xmlParse(next_html, asText=TRUE) 

    page_url <- xmlAttrs(xmlRoot(next_xml))["href"] 

  } 

} 

#Finally, write the collected data to an output file 

write.table(job_data, file="output_data.csv", sep=",", col.names=TRUE, row.names=FALSE) 
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